学习了三维形状对应的二元光谱形状描述符

J. Xie, M. Wang, Yi Fang
{"title":"学习了三维形状对应的二元光谱形状描述符","authors":"J. Xie, M. Wang, Yi Fang","doi":"10.1109/CVPR.2016.360","DOIUrl":null,"url":null,"abstract":"Dense 3D shape correspondence is an important problem in computer vision and computer graphics. Recently, the local shape descriptor based 3D shape correspondence approaches have been widely studied, where the local shape descriptor is a real-valued vector to characterize the geometrical structure of the shape. Different from these realvalued local shape descriptors, in this paper, we propose to learn a novel binary spectral shape descriptor with the deep neural network for 3D shape correspondence. The binary spectral shape descriptor can require less storage space and enable fast matching. First, based on the eigenvectors of the Laplace-Beltrami operator, we construct a neural network to form a nonlinear spectral representation to characterize the shape. Then, for the defined positive and negative points on the shapes, we train the constructed neural network by minimizing the errors between the outputs and their corresponding binary descriptors, minimizing the variations of the outputs of the positive points and maximizing the variations of the outputs of the negative points, simultaneously. Finally, we binarize the output of the neural network to form the binary spectral shape descriptor for shape correspondence. The proposed binary spectral shape descriptor is evaluated on the SCAPE and TOSCA 3D shape datasets for shape correspondence. The experimental results demonstrate the effectiveness of the proposed binary shape descriptor for the shape correspondence task.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"148 Pt 7 1","pages":"3309-3317"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Learned Binary Spectral Shape Descriptor for 3D Shape Correspondence\",\"authors\":\"J. Xie, M. Wang, Yi Fang\",\"doi\":\"10.1109/CVPR.2016.360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dense 3D shape correspondence is an important problem in computer vision and computer graphics. Recently, the local shape descriptor based 3D shape correspondence approaches have been widely studied, where the local shape descriptor is a real-valued vector to characterize the geometrical structure of the shape. Different from these realvalued local shape descriptors, in this paper, we propose to learn a novel binary spectral shape descriptor with the deep neural network for 3D shape correspondence. The binary spectral shape descriptor can require less storage space and enable fast matching. First, based on the eigenvectors of the Laplace-Beltrami operator, we construct a neural network to form a nonlinear spectral representation to characterize the shape. Then, for the defined positive and negative points on the shapes, we train the constructed neural network by minimizing the errors between the outputs and their corresponding binary descriptors, minimizing the variations of the outputs of the positive points and maximizing the variations of the outputs of the negative points, simultaneously. Finally, we binarize the output of the neural network to form the binary spectral shape descriptor for shape correspondence. The proposed binary spectral shape descriptor is evaluated on the SCAPE and TOSCA 3D shape datasets for shape correspondence. The experimental results demonstrate the effectiveness of the proposed binary shape descriptor for the shape correspondence task.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"148 Pt 7 1\",\"pages\":\"3309-3317\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

密集三维形状对应是计算机视觉和计算机图形学中的一个重要问题。近年来,基于局部形状描述子的三维形状对应方法得到了广泛的研究,其中局部形状描述子是表征形状几何结构的实值向量。与这些重值的局部形状描述子不同,本文提出了一种新的基于深度神经网络的三维形状对应二元谱形状描述子。二元光谱形状描述符需要更少的存储空间,能够实现快速匹配。首先,基于拉普拉斯-贝尔特拉米算子的特征向量,构建神经网络,形成非线性谱表示来表征形状;然后,对于已定义的形状上的正负点,我们通过最小化输出与其对应的二进制描述子之间的误差,最小化正负点输出的变化量,同时最大化负点输出的变化量来训练构建的神经网络。最后,我们对神经网络的输出进行二值化,形成用于形状对应的二谱形状描述符。在SCAPE和TOSCA三维形状数据集上评估了所提出的二元光谱形状描述符的形状对应性。实验结果证明了所提出的二元形状描述符在形状对应任务中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learned Binary Spectral Shape Descriptor for 3D Shape Correspondence
Dense 3D shape correspondence is an important problem in computer vision and computer graphics. Recently, the local shape descriptor based 3D shape correspondence approaches have been widely studied, where the local shape descriptor is a real-valued vector to characterize the geometrical structure of the shape. Different from these realvalued local shape descriptors, in this paper, we propose to learn a novel binary spectral shape descriptor with the deep neural network for 3D shape correspondence. The binary spectral shape descriptor can require less storage space and enable fast matching. First, based on the eigenvectors of the Laplace-Beltrami operator, we construct a neural network to form a nonlinear spectral representation to characterize the shape. Then, for the defined positive and negative points on the shapes, we train the constructed neural network by minimizing the errors between the outputs and their corresponding binary descriptors, minimizing the variations of the outputs of the positive points and maximizing the variations of the outputs of the negative points, simultaneously. Finally, we binarize the output of the neural network to form the binary spectral shape descriptor for shape correspondence. The proposed binary spectral shape descriptor is evaluated on the SCAPE and TOSCA 3D shape datasets for shape correspondence. The experimental results demonstrate the effectiveness of the proposed binary shape descriptor for the shape correspondence task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Me That Shoe Multivariate Regression on the Grassmannian for Predicting Novel Domains How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image Discovering the Physical Parts of an Articulated Object Class from Multiple Videos Simultaneous Optical Flow and Intensity Estimation from an Event Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1