Xuran Guo, Wei Chen, Rongli Wei, Jingchen Sui, Xin Huang, Na Wang, Songqiang Liu, Ting Wang, H. Hao
{"title":"不同分子排列导致不同的脱溶速率:2,7 -二溴- 9H -咔唑溶剂化物的稳定性研究","authors":"Xuran Guo, Wei Chen, Rongli Wei, Jingchen Sui, Xin Huang, Na Wang, Songqiang Liu, Ting Wang, H. Hao","doi":"10.1002/crat.202100059","DOIUrl":null,"url":null,"abstract":"The stability of solvates is very important in the field of crystal engineering. Molecular interaction and packing mode are important factors affecting the stability of solvates. In this study, 2,7‐dibromo‐9H‐carbazole is selected as the model compound to investigate the influence of molecular stacking mode on the stability of solvates. An anhydrous form and five solvates of 2,7‐dibromo‐9H‐carbazole are obtained by recrystallization. The desolvation phenomena of the five solvates are studied by thermogravimetric analysis, hot stage microscope, and infrared spectroscopy and it is found that the stability of the solvates is N,N‐dimethylacetamide solvate > dimethyl sulfoxide solvate > N,N‐dimethylformamide solvate > dioxane solvate > acetonitrile solvate. Crystal structures are analyzed by single crystal X‐ray diffraction and Hirshfeld surface analysis is also applied to analyze the intermolecular interactions in the crystals. The results show that the stability of the five solvates is related to the packing modes of the molecules in the crystal. It is suggested that the solute molecules and solvent molecules in the unstable solvates are arranged in the interlayer mode, while they are arranged in a staggered mode in stable solvates.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"49 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Various Molecular Arrangements Leading to Different Desolvation Rates: Research on the Stability of 2,7‐Dibromo‐9H‐carbazole Solvates\",\"authors\":\"Xuran Guo, Wei Chen, Rongli Wei, Jingchen Sui, Xin Huang, Na Wang, Songqiang Liu, Ting Wang, H. Hao\",\"doi\":\"10.1002/crat.202100059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stability of solvates is very important in the field of crystal engineering. Molecular interaction and packing mode are important factors affecting the stability of solvates. In this study, 2,7‐dibromo‐9H‐carbazole is selected as the model compound to investigate the influence of molecular stacking mode on the stability of solvates. An anhydrous form and five solvates of 2,7‐dibromo‐9H‐carbazole are obtained by recrystallization. The desolvation phenomena of the five solvates are studied by thermogravimetric analysis, hot stage microscope, and infrared spectroscopy and it is found that the stability of the solvates is N,N‐dimethylacetamide solvate > dimethyl sulfoxide solvate > N,N‐dimethylformamide solvate > dioxane solvate > acetonitrile solvate. Crystal structures are analyzed by single crystal X‐ray diffraction and Hirshfeld surface analysis is also applied to analyze the intermolecular interactions in the crystals. The results show that the stability of the five solvates is related to the packing modes of the molecules in the crystal. It is suggested that the solute molecules and solvent molecules in the unstable solvates are arranged in the interlayer mode, while they are arranged in a staggered mode in stable solvates.\",\"PeriodicalId\":10797,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/crat.202100059\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/crat.202100059","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Various Molecular Arrangements Leading to Different Desolvation Rates: Research on the Stability of 2,7‐Dibromo‐9H‐carbazole Solvates
The stability of solvates is very important in the field of crystal engineering. Molecular interaction and packing mode are important factors affecting the stability of solvates. In this study, 2,7‐dibromo‐9H‐carbazole is selected as the model compound to investigate the influence of molecular stacking mode on the stability of solvates. An anhydrous form and five solvates of 2,7‐dibromo‐9H‐carbazole are obtained by recrystallization. The desolvation phenomena of the five solvates are studied by thermogravimetric analysis, hot stage microscope, and infrared spectroscopy and it is found that the stability of the solvates is N,N‐dimethylacetamide solvate > dimethyl sulfoxide solvate > N,N‐dimethylformamide solvate > dioxane solvate > acetonitrile solvate. Crystal structures are analyzed by single crystal X‐ray diffraction and Hirshfeld surface analysis is also applied to analyze the intermolecular interactions in the crystals. The results show that the stability of the five solvates is related to the packing modes of the molecules in the crystal. It is suggested that the solute molecules and solvent molecules in the unstable solvates are arranged in the interlayer mode, while they are arranged in a staggered mode in stable solvates.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing