{"title":"(Gap/S) SVP的ETH硬度","authors":"Divesh Aggarwal, Noah Stephens-Davidowitz","doi":"10.1145/3188745.3188840","DOIUrl":null,"url":null,"abstract":"We prove the following quantitative hardness results for the Shortest Vector Problem in the ℓp norm (SVP_p), where n is the rank of the input lattice. For “almost all” p > p0 ≈ 2.1397, there is no 2n/Cp-time algorithm for SVP_p for some explicit (easily computable) constant Cp > 0 unless the (randomized) Strong Exponential Time Hypothesis (SETH) is false. (E.g., for p ≥ 3, Cp < 1 + (p+3) 2−p + 10 p2 2−2p.) For any 1 ≤ p ≤ ∞, there is no 2o(n)-time algorithm for SVP_p unless the non-uniform Gap-Exponential Time Hypothesis (Gap-ETH) is false. Furthermore, for each such p, there exists a constant γp > 1 such that the same result holds even for γp-approximate SVP_p. For p > 2, the above statement holds under the weaker assumption of randomized Gap-ETH. I.e., there is no 2o(n)-time algorithm for γp-approximate SVP_p unless randomized Gap-ETH is false. See http://arxiv.org/abs/1712.00942 for a complete exposition.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"(Gap/S)ETH hardness of SVP\",\"authors\":\"Divesh Aggarwal, Noah Stephens-Davidowitz\",\"doi\":\"10.1145/3188745.3188840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the following quantitative hardness results for the Shortest Vector Problem in the ℓp norm (SVP_p), where n is the rank of the input lattice. For “almost all” p > p0 ≈ 2.1397, there is no 2n/Cp-time algorithm for SVP_p for some explicit (easily computable) constant Cp > 0 unless the (randomized) Strong Exponential Time Hypothesis (SETH) is false. (E.g., for p ≥ 3, Cp < 1 + (p+3) 2−p + 10 p2 2−2p.) For any 1 ≤ p ≤ ∞, there is no 2o(n)-time algorithm for SVP_p unless the non-uniform Gap-Exponential Time Hypothesis (Gap-ETH) is false. Furthermore, for each such p, there exists a constant γp > 1 such that the same result holds even for γp-approximate SVP_p. For p > 2, the above statement holds under the weaker assumption of randomized Gap-ETH. I.e., there is no 2o(n)-time algorithm for γp-approximate SVP_p unless randomized Gap-ETH is false. See http://arxiv.org/abs/1712.00942 for a complete exposition.\",\"PeriodicalId\":20593,\"journal\":{\"name\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3188745.3188840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove the following quantitative hardness results for the Shortest Vector Problem in the ℓp norm (SVP_p), where n is the rank of the input lattice. For “almost all” p > p0 ≈ 2.1397, there is no 2n/Cp-time algorithm for SVP_p for some explicit (easily computable) constant Cp > 0 unless the (randomized) Strong Exponential Time Hypothesis (SETH) is false. (E.g., for p ≥ 3, Cp < 1 + (p+3) 2−p + 10 p2 2−2p.) For any 1 ≤ p ≤ ∞, there is no 2o(n)-time algorithm for SVP_p unless the non-uniform Gap-Exponential Time Hypothesis (Gap-ETH) is false. Furthermore, for each such p, there exists a constant γp > 1 such that the same result holds even for γp-approximate SVP_p. For p > 2, the above statement holds under the weaker assumption of randomized Gap-ETH. I.e., there is no 2o(n)-time algorithm for γp-approximate SVP_p unless randomized Gap-ETH is false. See http://arxiv.org/abs/1712.00942 for a complete exposition.