{"title":"暴露于空气中气溶胶颗粒后与COVID-19感染相关的神经系统并发症","authors":"M. Ehsanifar, M. Rafati, Jie Wang","doi":"10.31579/2693-4779/081","DOIUrl":null,"url":null,"abstract":"Some of the recent researches show that air pollutants such as particulate matter (PM), including fine particles (PM<2.5μm, PM2.5) and very fine particles (PM <0.1μm, PM 0.1) can reach the brain and affect CNS health. Neurological complications with Coronavirus Disease 2019 (COVID-19) have been observed. The aim of this review the relationship between air pollutants exposure and COVID-19 was focused on the role of airborne aerosol particles in the prevalence of the disease, as well as the neurological effects of COVID-19. It is not yet clear how the virus is transmitted from one sick person to another and why it is so transmissible. Viruses can be probably transmitted through speech and exhalation aerosols. Findings show that SARS-CoV-2 aerosol transmission is possible. Spike (S) proteins of SARS‑CoV‑2 determine tissue tropism using an angiotensin-converting enzyme receptor type2 (ACE-2) to bind to the cells. ACE-2 receptor is found in the tissues of the nervous system. Neurological disorders that occur with COVID-19 can have many pathophysiological backgrounds. Some are the result of a direct viral attack on tissues of the nervous system, others appear to be an autoimmune process post-viral, and still others appear to be the result of systemic and metabolic complications associated with critical illness.","PeriodicalId":8525,"journal":{"name":"Applied Clinical Research, Clinical Trials and Regulatory Affairs","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Neurological complications related to COVID-19 infections following exposure to airborne aerosol particles\",\"authors\":\"M. Ehsanifar, M. Rafati, Jie Wang\",\"doi\":\"10.31579/2693-4779/081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some of the recent researches show that air pollutants such as particulate matter (PM), including fine particles (PM<2.5μm, PM2.5) and very fine particles (PM <0.1μm, PM 0.1) can reach the brain and affect CNS health. Neurological complications with Coronavirus Disease 2019 (COVID-19) have been observed. The aim of this review the relationship between air pollutants exposure and COVID-19 was focused on the role of airborne aerosol particles in the prevalence of the disease, as well as the neurological effects of COVID-19. It is not yet clear how the virus is transmitted from one sick person to another and why it is so transmissible. Viruses can be probably transmitted through speech and exhalation aerosols. Findings show that SARS-CoV-2 aerosol transmission is possible. Spike (S) proteins of SARS‑CoV‑2 determine tissue tropism using an angiotensin-converting enzyme receptor type2 (ACE-2) to bind to the cells. ACE-2 receptor is found in the tissues of the nervous system. Neurological disorders that occur with COVID-19 can have many pathophysiological backgrounds. Some are the result of a direct viral attack on tissues of the nervous system, others appear to be an autoimmune process post-viral, and still others appear to be the result of systemic and metabolic complications associated with critical illness.\",\"PeriodicalId\":8525,\"journal\":{\"name\":\"Applied Clinical Research, Clinical Trials and Regulatory Affairs\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clinical Research, Clinical Trials and Regulatory Affairs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31579/2693-4779/081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clinical Research, Clinical Trials and Regulatory Affairs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31579/2693-4779/081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neurological complications related to COVID-19 infections following exposure to airborne aerosol particles
Some of the recent researches show that air pollutants such as particulate matter (PM), including fine particles (PM<2.5μm, PM2.5) and very fine particles (PM <0.1μm, PM 0.1) can reach the brain and affect CNS health. Neurological complications with Coronavirus Disease 2019 (COVID-19) have been observed. The aim of this review the relationship between air pollutants exposure and COVID-19 was focused on the role of airborne aerosol particles in the prevalence of the disease, as well as the neurological effects of COVID-19. It is not yet clear how the virus is transmitted from one sick person to another and why it is so transmissible. Viruses can be probably transmitted through speech and exhalation aerosols. Findings show that SARS-CoV-2 aerosol transmission is possible. Spike (S) proteins of SARS‑CoV‑2 determine tissue tropism using an angiotensin-converting enzyme receptor type2 (ACE-2) to bind to the cells. ACE-2 receptor is found in the tissues of the nervous system. Neurological disorders that occur with COVID-19 can have many pathophysiological backgrounds. Some are the result of a direct viral attack on tissues of the nervous system, others appear to be an autoimmune process post-viral, and still others appear to be the result of systemic and metabolic complications associated with critical illness.