MgO对Fe2TiO4碳热还原的影响及机理

IF 0.9 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING Metallurgical Research & Technology Pub Date : 2021-01-01 DOI:10.1051/metal/2021059
Yunfei Chen, Xiangdong Xing
{"title":"MgO对Fe2TiO4碳热还原的影响及机理","authors":"Yunfei Chen, Xiangdong Xing","doi":"10.1051/metal/2021059","DOIUrl":null,"url":null,"abstract":"The effects of MgO on carbothermal reduction of Fe2TiO4 had been researched including the thermodynamic calculation in this paper. And, based on XRD and SEM-EDS, the effect mechanism of MgO on the direct reduction of Fe2TiO4 had been deeply dissected, systematically. The results showed that magnesium titanium phases including MgTi2O5, MgTiO3 and Mg2TiO4 were formatted after MgO added into Fe2TiO4, which was main reason to affect the reduction of Fe2TiO4. When the MgO content in Fe2TiO4 did not exceed 2%, there was the promoting effect on the reduction of Fe2TiO4. With the increase of MgO content from 2% to 8%, the magnesium titanium phases transformed from MgTi2O5, and through MgTiO3 to Mg2TiO4. The inhibition function appeared, and can be weaken in the high reduction temperature. When reduction temperature reaches to 1300 °C, the metallization rate of F-M-8 (the reduction sample of 8% MgO) can reach 80.62% from 56.43% at 1200 °C. However, the aggregation degree of iron particles became worse when MgO was added to the sample.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects and mechanism of MgO on carbothermal reduction of Fe2TiO4\",\"authors\":\"Yunfei Chen, Xiangdong Xing\",\"doi\":\"10.1051/metal/2021059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of MgO on carbothermal reduction of Fe2TiO4 had been researched including the thermodynamic calculation in this paper. And, based on XRD and SEM-EDS, the effect mechanism of MgO on the direct reduction of Fe2TiO4 had been deeply dissected, systematically. The results showed that magnesium titanium phases including MgTi2O5, MgTiO3 and Mg2TiO4 were formatted after MgO added into Fe2TiO4, which was main reason to affect the reduction of Fe2TiO4. When the MgO content in Fe2TiO4 did not exceed 2%, there was the promoting effect on the reduction of Fe2TiO4. With the increase of MgO content from 2% to 8%, the magnesium titanium phases transformed from MgTi2O5, and through MgTiO3 to Mg2TiO4. The inhibition function appeared, and can be weaken in the high reduction temperature. When reduction temperature reaches to 1300 °C, the metallization rate of F-M-8 (the reduction sample of 8% MgO) can reach 80.62% from 56.43% at 1200 °C. However, the aggregation degree of iron particles became worse when MgO was added to the sample.\",\"PeriodicalId\":18527,\"journal\":{\"name\":\"Metallurgical Research & Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical Research & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1051/metal/2021059\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2021059","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了MgO对Fe2TiO4碳热还原的影响,包括热力学计算。并利用XRD和SEM-EDS对MgO对Fe2TiO4直接还原的影响机理进行了深入系统的剖析。结果表明:在Fe2TiO4中加入MgO后,MgTi2O5、MgTiO3和Mg2TiO4镁钛相形成,这是影响Fe2TiO4还原的主要原因;当Fe2TiO4中MgO含量不超过2%时,对Fe2TiO4的还原有促进作用。当MgO含量从2%增加到8%时,镁钛相由MgTi2O5、MgTiO3转变为Mg2TiO4。缓蚀作用出现,但在高还原温度下会减弱。当还原温度达到1300℃时,F-M-8 (8% MgO的还原样品)的金属化率由1200℃时的56.43%达到80.62%。而加入MgO后,铁颗粒的聚集程度变差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects and mechanism of MgO on carbothermal reduction of Fe2TiO4
The effects of MgO on carbothermal reduction of Fe2TiO4 had been researched including the thermodynamic calculation in this paper. And, based on XRD and SEM-EDS, the effect mechanism of MgO on the direct reduction of Fe2TiO4 had been deeply dissected, systematically. The results showed that magnesium titanium phases including MgTi2O5, MgTiO3 and Mg2TiO4 were formatted after MgO added into Fe2TiO4, which was main reason to affect the reduction of Fe2TiO4. When the MgO content in Fe2TiO4 did not exceed 2%, there was the promoting effect on the reduction of Fe2TiO4. With the increase of MgO content from 2% to 8%, the magnesium titanium phases transformed from MgTi2O5, and through MgTiO3 to Mg2TiO4. The inhibition function appeared, and can be weaken in the high reduction temperature. When reduction temperature reaches to 1300 °C, the metallization rate of F-M-8 (the reduction sample of 8% MgO) can reach 80.62% from 56.43% at 1200 °C. However, the aggregation degree of iron particles became worse when MgO was added to the sample.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metallurgical Research & Technology
Metallurgical Research & Technology METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.70
自引率
9.10%
发文量
65
审稿时长
4.4 months
期刊介绍: Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags. The journal is listed in the citation index Web of Science and has an Impact Factor. It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.
期刊最新文献
Bend forming of aluminum alloy integral panel: a review Kinetic and mechanical properties of boronized AISI 1020 steel with Baybora-2 powder The method of reducing energy consumption in large blast furnace smelting by increasing top pressure Distribution behavior and deportation of arsenic in copper top-blown smelting process Effect of slag properties and non-uniform bottom blowing gas supply mode on fluid flow and mixing behavior in converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1