流行病个体模型在随机无标度网络中的应用

Christofer Roque Ribeiro Silva, A. Almeida, R. N. Cardoso, R. Takahashi
{"title":"流行病个体模型在随机无标度网络中的应用","authors":"Christofer Roque Ribeiro Silva, A. Almeida, R. N. Cardoso, R. Takahashi","doi":"10.28951/rbb.v38i1.421","DOIUrl":null,"url":null,"abstract":"This work proposes a version of the Individual-Based Model (IBM) that converges, on average, to the result of the SIR (Susceptible-Infected-Recovered) model, and studies the effect of this IBM in two types of networks: random and scale-free. A numerical computational case study is considered, using large scale networks implemented by an efficient framework. Statistical tests are performed to show the similarities and differences between the network models and the deterministic model taken as a baseline. Simulation results verify that different network topologies alter the behavior of the epidemic propagation in the following aspects: temporal evolution, basal reproducibility and the number of infected in the final.","PeriodicalId":36293,"journal":{"name":"Revista Brasileira de Biometria","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EPIDEMIC INDIVIDUAL-BASED MODELS APPLIED IN RANDOM AND SCALE-FREE NETWORKS\",\"authors\":\"Christofer Roque Ribeiro Silva, A. Almeida, R. N. Cardoso, R. Takahashi\",\"doi\":\"10.28951/rbb.v38i1.421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a version of the Individual-Based Model (IBM) that converges, on average, to the result of the SIR (Susceptible-Infected-Recovered) model, and studies the effect of this IBM in two types of networks: random and scale-free. A numerical computational case study is considered, using large scale networks implemented by an efficient framework. Statistical tests are performed to show the similarities and differences between the network models and the deterministic model taken as a baseline. Simulation results verify that different network topologies alter the behavior of the epidemic propagation in the following aspects: temporal evolution, basal reproducibility and the number of infected in the final.\",\"PeriodicalId\":36293,\"journal\":{\"name\":\"Revista Brasileira de Biometria\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Biometria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28951/rbb.v38i1.421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Biometria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28951/rbb.v38i1.421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

这项工作提出了一个基于个人的模型(IBM)的版本,该模型平均收敛于SIR(易感-感染-恢复)模型的结果,并研究了这种IBM在两种类型的网络中的影响:随机网络和无标度网络。考虑了一个数值计算案例研究,使用由高效框架实现的大规模网络。进行统计测试,以显示网络模型和确定性模型作为基线之间的异同。仿真结果验证了不同的网络拓扑结构在时间演化、基础重现性和最终感染人数等方面改变了流行病的传播行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EPIDEMIC INDIVIDUAL-BASED MODELS APPLIED IN RANDOM AND SCALE-FREE NETWORKS
This work proposes a version of the Individual-Based Model (IBM) that converges, on average, to the result of the SIR (Susceptible-Infected-Recovered) model, and studies the effect of this IBM in two types of networks: random and scale-free. A numerical computational case study is considered, using large scale networks implemented by an efficient framework. Statistical tests are performed to show the similarities and differences between the network models and the deterministic model taken as a baseline. Simulation results verify that different network topologies alter the behavior of the epidemic propagation in the following aspects: temporal evolution, basal reproducibility and the number of infected in the final.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Brasileira de Biometria
Revista Brasileira de Biometria Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
自引率
0.00%
发文量
0
审稿时长
53 weeks
期刊最新文献
CLUSTER ANALYSIS IDENTIFIES VARIABLES RELATED TO PROGNOSIS OF BREAST CANCER DISEASE UROCHLOA GRASS GROWTH AS A FUNCTION OF NITROGEN AND PHOSPHORUS FERTILIZATION BEST LINEAR UNBIASED LATENT VALUES PREDICTORS FOR FINITE POPULATION LINEAR MODELS WITH DIFFERENT ERROR SOURCES ANALYSIS OF COVID-19 CONTAMINATION AND DEATHS CASES IN BRAZIL ACCORDING TO THE NEWCOMB-BENFORD INCIDENCE AND LETHALITY OF COVID-19 CLUSTERS IN BRAZIL VIA CIRCULAR SCAN METHOD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1