{"title":"基于U-net的动态烟雾跟踪方法","authors":"K. Gwak, Young J. Rho","doi":"10.7236/JIIBC.2021.21.4.81","DOIUrl":null,"url":null,"abstract":"Artificial intelligence technology is developing as it enters the fourth industrial revolution. Active researches are going on; visual-based models using CNNs. U-net is one of the visual-based models. It has shown strong performance for semantic segmentation. Although various U-net studies have been conducted, studies on tracking objects with unclear outlines such as gases and smokes are still insufficient. We conducted a U-net study to tackle this limitation. In this paper, we describe how 3D cameras are used to collect data. The data are organized into learning and test sets. This paper also describes how U-net is applied and how the results is validated.","PeriodicalId":22795,"journal":{"name":"The Journal of the Institute of Webcasting, Internet and Telecommunication","volume":"14 1","pages":"81-87"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking Method of Dynamic Smoke based on U-net\",\"authors\":\"K. Gwak, Young J. Rho\",\"doi\":\"10.7236/JIIBC.2021.21.4.81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence technology is developing as it enters the fourth industrial revolution. Active researches are going on; visual-based models using CNNs. U-net is one of the visual-based models. It has shown strong performance for semantic segmentation. Although various U-net studies have been conducted, studies on tracking objects with unclear outlines such as gases and smokes are still insufficient. We conducted a U-net study to tackle this limitation. In this paper, we describe how 3D cameras are used to collect data. The data are organized into learning and test sets. This paper also describes how U-net is applied and how the results is validated.\",\"PeriodicalId\":22795,\"journal\":{\"name\":\"The Journal of the Institute of Webcasting, Internet and Telecommunication\",\"volume\":\"14 1\",\"pages\":\"81-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of the Institute of Webcasting, Internet and Telecommunication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7236/JIIBC.2021.21.4.81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Institute of Webcasting, Internet and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7236/JIIBC.2021.21.4.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Artificial intelligence technology is developing as it enters the fourth industrial revolution. Active researches are going on; visual-based models using CNNs. U-net is one of the visual-based models. It has shown strong performance for semantic segmentation. Although various U-net studies have been conducted, studies on tracking objects with unclear outlines such as gases and smokes are still insufficient. We conducted a U-net study to tackle this limitation. In this paper, we describe how 3D cameras are used to collect data. The data are organized into learning and test sets. This paper also describes how U-net is applied and how the results is validated.