铜板传统搅拌摩擦焊与水下搅拌摩擦焊的对比研究

N. Ethiraj, T. Sivabalan, S. Meikeerthy, K. Kumar, G. Chaithanya, G. R. K. Reddy
{"title":"铜板传统搅拌摩擦焊与水下搅拌摩擦焊的对比研究","authors":"N. Ethiraj, T. Sivabalan, S. Meikeerthy, K. Kumar, G. Chaithanya, G. R. K. Reddy","doi":"10.1063/1.5117946","DOIUrl":null,"url":null,"abstract":"Friction stir welding (FSW) is a solid state welding in which the material is joined without melting but plasticized and stirred by the rotating tool. Underwater friction stir welding (UWFSW) is performed under the water against the conventional FSW where the process is carried out in air at room temperature. This paper deals with the investigation on the joints made by conventional and underwater FSW of copper sheet of thickness 2.0 mm. The experiments were carried out in computer numerically controlled vertical milling machine using the high speed steel tool with a rotational speed of 600,800,1000,1200 and 1300 rpm keeping the tool traversing speed of 50 mm/min and tool tilting angle of 0o as constant parameters. The investigation on the mechanical and microstructural properties of the joints made in both conditions are carried out and compared. The joint made at tool rotational speed 1200rpm has shown the maximum tensile strength of 91.5% & 66.6% to that of the base material in both conventional and underwater FSW respectively. Also, the maximum tensile strength achieved in underwater FSW at 1200rpm is approximately 27% less than the conventional FSW within the experimented parameters. Due to the presence of water, the heat generated by the rotating tool is not sufficient enough to plasticize the material compared to conventional process, the tensile strength of the welded joint is lower than the conventional FSW. Study of microscopic images reveals that the grains are so finer in underwater condition when compared with the conventional FSW.Friction stir welding (FSW) is a solid state welding in which the material is joined without melting but plasticized and stirred by the rotating tool. Underwater friction stir welding (UWFSW) is performed under the water against the conventional FSW where the process is carried out in air at room temperature. This paper deals with the investigation on the joints made by conventional and underwater FSW of copper sheet of thickness 2.0 mm. The experiments were carried out in computer numerically controlled vertical milling machine using the high speed steel tool with a rotational speed of 600,800,1000,1200 and 1300 rpm keeping the tool traversing speed of 50 mm/min and tool tilting angle of 0o as constant parameters. The investigation on the mechanical and microstructural properties of the joints made in both conditions are carried out and compared. The joint made at tool rotational speed 1200rpm has shown the maximum tensile strength of 91.5% & 66.6% to that of the base material in both conventional and un...","PeriodicalId":13819,"journal":{"name":"INTERNATIONAL CONFERENCE ON MATERIALS, MANUFACTURING AND MACHINING 2019","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparative study on conventional and underwater friction stir welding of copper plates\",\"authors\":\"N. Ethiraj, T. Sivabalan, S. Meikeerthy, K. Kumar, G. Chaithanya, G. R. K. Reddy\",\"doi\":\"10.1063/1.5117946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Friction stir welding (FSW) is a solid state welding in which the material is joined without melting but plasticized and stirred by the rotating tool. Underwater friction stir welding (UWFSW) is performed under the water against the conventional FSW where the process is carried out in air at room temperature. This paper deals with the investigation on the joints made by conventional and underwater FSW of copper sheet of thickness 2.0 mm. The experiments were carried out in computer numerically controlled vertical milling machine using the high speed steel tool with a rotational speed of 600,800,1000,1200 and 1300 rpm keeping the tool traversing speed of 50 mm/min and tool tilting angle of 0o as constant parameters. The investigation on the mechanical and microstructural properties of the joints made in both conditions are carried out and compared. The joint made at tool rotational speed 1200rpm has shown the maximum tensile strength of 91.5% & 66.6% to that of the base material in both conventional and underwater FSW respectively. Also, the maximum tensile strength achieved in underwater FSW at 1200rpm is approximately 27% less than the conventional FSW within the experimented parameters. Due to the presence of water, the heat generated by the rotating tool is not sufficient enough to plasticize the material compared to conventional process, the tensile strength of the welded joint is lower than the conventional FSW. Study of microscopic images reveals that the grains are so finer in underwater condition when compared with the conventional FSW.Friction stir welding (FSW) is a solid state welding in which the material is joined without melting but plasticized and stirred by the rotating tool. Underwater friction stir welding (UWFSW) is performed under the water against the conventional FSW where the process is carried out in air at room temperature. This paper deals with the investigation on the joints made by conventional and underwater FSW of copper sheet of thickness 2.0 mm. The experiments were carried out in computer numerically controlled vertical milling machine using the high speed steel tool with a rotational speed of 600,800,1000,1200 and 1300 rpm keeping the tool traversing speed of 50 mm/min and tool tilting angle of 0o as constant parameters. The investigation on the mechanical and microstructural properties of the joints made in both conditions are carried out and compared. The joint made at tool rotational speed 1200rpm has shown the maximum tensile strength of 91.5% & 66.6% to that of the base material in both conventional and un...\",\"PeriodicalId\":13819,\"journal\":{\"name\":\"INTERNATIONAL CONFERENCE ON MATERIALS, MANUFACTURING AND MACHINING 2019\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL CONFERENCE ON MATERIALS, MANUFACTURING AND MACHINING 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5117946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL CONFERENCE ON MATERIALS, MANUFACTURING AND MACHINING 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5117946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

搅拌摩擦焊(FSW)是一种固体焊接,在这种焊接中,材料没有熔化,而是通过旋转的工具进行塑化和搅拌。水下搅拌摩擦焊(UWFSW)是在水下进行的,而传统的搅拌摩擦焊是在室温下的空气中进行的。本文对2.0 mm厚铜板的常规与水下搅拌焊接头进行了研究。以高速钢刀具为主轴,在600、800、1000、1200和1300转/分转速下,以50 mm/min的刀速和00°的刀倾角为恒定参数,在计算机数控立铣床上进行了实验。对两种条件下接头的力学性能和显微组织性能进行了研究和比较。在工具转速为1200rpm时,接头的抗拉强度分别为常规FSW和水下FSW中基材的91.5%和66.6%。此外,在实验参数范围内,水下FSW在1200rpm时达到的最大抗拉强度比传统FSW低约27%。由于水的存在,与传统工艺相比,旋转工具产生的热量不足以使材料塑化,焊接接头的抗拉强度低于传统的FSW。显微图像的研究表明,在水下条件下,与传统的FSW相比,颗粒更细。搅拌摩擦焊(FSW)是一种固体焊接,在这种焊接中,材料没有熔化,而是通过旋转的工具进行塑化和搅拌。水下搅拌摩擦焊(UWFSW)是在水下进行的,而传统的搅拌摩擦焊是在室温下的空气中进行的。本文对2.0 mm厚铜板的常规与水下搅拌焊接头进行了研究。以高速钢刀具为主轴,在600、800、1000、1200和1300转/分转速下,以50 mm/min的刀速和00°的刀倾角为恒定参数,在计算机数控立铣床上进行了实验。对两种条件下接头的力学性能和显微组织性能进行了研究和比较。在刀具转速1200rpm下制成的接头,在常规和非常规条件下的最大抗拉强度分别为母材的91.5%和66.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative study on conventional and underwater friction stir welding of copper plates
Friction stir welding (FSW) is a solid state welding in which the material is joined without melting but plasticized and stirred by the rotating tool. Underwater friction stir welding (UWFSW) is performed under the water against the conventional FSW where the process is carried out in air at room temperature. This paper deals with the investigation on the joints made by conventional and underwater FSW of copper sheet of thickness 2.0 mm. The experiments were carried out in computer numerically controlled vertical milling machine using the high speed steel tool with a rotational speed of 600,800,1000,1200 and 1300 rpm keeping the tool traversing speed of 50 mm/min and tool tilting angle of 0o as constant parameters. The investigation on the mechanical and microstructural properties of the joints made in both conditions are carried out and compared. The joint made at tool rotational speed 1200rpm has shown the maximum tensile strength of 91.5% & 66.6% to that of the base material in both conventional and underwater FSW respectively. Also, the maximum tensile strength achieved in underwater FSW at 1200rpm is approximately 27% less than the conventional FSW within the experimented parameters. Due to the presence of water, the heat generated by the rotating tool is not sufficient enough to plasticize the material compared to conventional process, the tensile strength of the welded joint is lower than the conventional FSW. Study of microscopic images reveals that the grains are so finer in underwater condition when compared with the conventional FSW.Friction stir welding (FSW) is a solid state welding in which the material is joined without melting but plasticized and stirred by the rotating tool. Underwater friction stir welding (UWFSW) is performed under the water against the conventional FSW where the process is carried out in air at room temperature. This paper deals with the investigation on the joints made by conventional and underwater FSW of copper sheet of thickness 2.0 mm. The experiments were carried out in computer numerically controlled vertical milling machine using the high speed steel tool with a rotational speed of 600,800,1000,1200 and 1300 rpm keeping the tool traversing speed of 50 mm/min and tool tilting angle of 0o as constant parameters. The investigation on the mechanical and microstructural properties of the joints made in both conditions are carried out and compared. The joint made at tool rotational speed 1200rpm has shown the maximum tensile strength of 91.5% & 66.6% to that of the base material in both conventional and un...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of fibers and fillers on thermal behaviour of thermoplastic copolyester elastomer composites Effects of combustion chamber profile on direct injection diesel engine operated with SuOME Phase stability study on wrought duplex and super duplex stainless steels grade 4A, 5A and 6A at elevated temperatures and the effect on their mechanical properties A study on replacement of fine aggregates and cement CFD simulation analysis and experimental study on multilobe hydrodynamic journal bearing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1