睾酮通过toll样受体4/细胞外信号调节激酶信号通路调节免疫系统

Chien-Wei Chen, Sindy Hu, Paulus S. Wang, Shyi-Wu Wang
{"title":"睾酮通过toll样受体4/细胞外信号调节激酶信号通路调节免疫系统","authors":"Chien-Wei Chen, Sindy Hu, Paulus S. Wang, Shyi-Wu Wang","doi":"10.14800/ICS.1407","DOIUrl":null,"url":null,"abstract":"There is a growing body of evidence supporting the immunomodulation effects of testosterone. Previous researches have focused on its direct blunt inflammatory effect on mediation of cytokines secretion through down-regulated expression of toll-like receptor 4 (TLR4). However, how testosterone modulates immune responses via mechanisms of TLR4 downstream molecules has not yet been elucidated. Recently, we have firstly confirmed that testosterone deficiency is the main reason that caused the exacerbate inflammation status in rat spleen. Orchidectomy in rats resulted in a markedly enhance of spleen weight ( splenomegaly ) and basal production of nitric oxide (NO) from splenocytes. Moreover, lipopolysaccharide (LPS) amplified proliferation rate of splenocytes and the production of tumor necrosis factor-alpha (TNF-α) following castration. Extracellular signal-regulated kinase (ERK) is a critical mediator of TLR4 cascades, and we further examined whether absence of endogenous testosterone affects ERK expression. As anticipated, orchidectomized rats manifested an increased phosphorylation of ERK. Furthermore, testosterone administration was demonstrated to be associated with a diminished LPS-evoked TNF-α and NO secretion in a dose-dependent manner. In the present study, we answered how testosterone withdrawal affects downstream signaling cascades of TLR4 and supports that testosterone might potentially ameliorate inflammatory responses. Our findings mention the possibility that testosterone functions might serve as a useful endogenous regulator of immune responses.","PeriodicalId":13679,"journal":{"name":"Inflammation and cell signaling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Testosterone as a regulator of immune system via modulation of toll-like receptor 4/extracellular signal-regulated kinase signaling pathway\",\"authors\":\"Chien-Wei Chen, Sindy Hu, Paulus S. Wang, Shyi-Wu Wang\",\"doi\":\"10.14800/ICS.1407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing body of evidence supporting the immunomodulation effects of testosterone. Previous researches have focused on its direct blunt inflammatory effect on mediation of cytokines secretion through down-regulated expression of toll-like receptor 4 (TLR4). However, how testosterone modulates immune responses via mechanisms of TLR4 downstream molecules has not yet been elucidated. Recently, we have firstly confirmed that testosterone deficiency is the main reason that caused the exacerbate inflammation status in rat spleen. Orchidectomy in rats resulted in a markedly enhance of spleen weight ( splenomegaly ) and basal production of nitric oxide (NO) from splenocytes. Moreover, lipopolysaccharide (LPS) amplified proliferation rate of splenocytes and the production of tumor necrosis factor-alpha (TNF-α) following castration. Extracellular signal-regulated kinase (ERK) is a critical mediator of TLR4 cascades, and we further examined whether absence of endogenous testosterone affects ERK expression. As anticipated, orchidectomized rats manifested an increased phosphorylation of ERK. Furthermore, testosterone administration was demonstrated to be associated with a diminished LPS-evoked TNF-α and NO secretion in a dose-dependent manner. In the present study, we answered how testosterone withdrawal affects downstream signaling cascades of TLR4 and supports that testosterone might potentially ameliorate inflammatory responses. Our findings mention the possibility that testosterone functions might serve as a useful endogenous regulator of immune responses.\",\"PeriodicalId\":13679,\"journal\":{\"name\":\"Inflammation and cell signaling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation and cell signaling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14800/ICS.1407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and cell signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/ICS.1407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

越来越多的证据支持睾酮的免疫调节作用。以往的研究主要集中在其通过下调toll样受体4 (TLR4)的表达介导细胞因子分泌,直接钝化炎症作用。然而,睾酮如何通过TLR4下游分子调节免疫反应的机制尚未阐明。最近,我们首次证实睾酮缺乏是导致大鼠脾脏炎症状态恶化的主要原因。大鼠的兰花切除导致脾脏重量(脾肿大)和脾细胞一氧化氮(NO)的基础生成明显增加。此外,脂多糖(LPS)增加了去势后脾细胞的增殖率和肿瘤坏死因子-α (TNF-α)的产生。细胞外信号调节激酶(ERK)是TLR4级联反应的关键介质,我们进一步研究了内源性睾酮的缺乏是否会影响ERK的表达。正如预期的那样,去兰花的大鼠表现出ERK磷酸化增加。此外,睾酮给药被证明与lps诱发的TNF-α和NO分泌减少呈剂量依赖关系。在本研究中,我们回答了睾酮戒断如何影响TLR4的下游信号级联,并支持睾酮可能潜在地改善炎症反应。我们的发现提到了睾酮功能可能作为一种有用的内源性免疫反应调节剂的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Testosterone as a regulator of immune system via modulation of toll-like receptor 4/extracellular signal-regulated kinase signaling pathway
There is a growing body of evidence supporting the immunomodulation effects of testosterone. Previous researches have focused on its direct blunt inflammatory effect on mediation of cytokines secretion through down-regulated expression of toll-like receptor 4 (TLR4). However, how testosterone modulates immune responses via mechanisms of TLR4 downstream molecules has not yet been elucidated. Recently, we have firstly confirmed that testosterone deficiency is the main reason that caused the exacerbate inflammation status in rat spleen. Orchidectomy in rats resulted in a markedly enhance of spleen weight ( splenomegaly ) and basal production of nitric oxide (NO) from splenocytes. Moreover, lipopolysaccharide (LPS) amplified proliferation rate of splenocytes and the production of tumor necrosis factor-alpha (TNF-α) following castration. Extracellular signal-regulated kinase (ERK) is a critical mediator of TLR4 cascades, and we further examined whether absence of endogenous testosterone affects ERK expression. As anticipated, orchidectomized rats manifested an increased phosphorylation of ERK. Furthermore, testosterone administration was demonstrated to be associated with a diminished LPS-evoked TNF-α and NO secretion in a dose-dependent manner. In the present study, we answered how testosterone withdrawal affects downstream signaling cascades of TLR4 and supports that testosterone might potentially ameliorate inflammatory responses. Our findings mention the possibility that testosterone functions might serve as a useful endogenous regulator of immune responses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasma level of M-CSF was independently related to 30-day survival in patients with suspected sepsis, and correlated to pathogen load: A prospective cohort study A study on the significance of anti-endothelial cell antibodies in chronic obstructive pulmonary disease and the effect of methylprednisolone intervention A case that high doses of Vitamin C as a potential therapy for COVID-19 The value of diagnostic model on COVID-19 by Comparing the Features between SARS-COV-2 and other viral infections COVID-19 pneumonia with night sweat as the first symptom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1