Chih-Cheng Lin, A. Tallin, Xueyong Guan, J. Kaura, Sasha F. Luces, S. Shayegi, K. W. Oyler, Ron Reutzel, M. LaPointe, Michael Teoh, T. Palisch, G. K. Wong
{"title":"业内首创:成功控压裸眼砾石充填项目的概念选择、材料测试和建模过程","authors":"Chih-Cheng Lin, A. Tallin, Xueyong Guan, J. Kaura, Sasha F. Luces, S. Shayegi, K. W. Oyler, Ron Reutzel, M. LaPointe, Michael Teoh, T. Palisch, G. K. Wong","doi":"10.2118/205771-ms","DOIUrl":null,"url":null,"abstract":"\n One of the major technical challenges to this project was placing horizontal open hole gravel packs (HzOHGP) within the narrow pore pressure to frac-gradient (PPFG) margin in the target reservoirs. This paper addresses the steps taken to overcome this challenge. To maximize the use of the narrow PPFG margin, the project combined a managed pressure drilling (MPD) system with low gravel placement pump rates made possible by an ultra-light-weight proppant (ULWP). Of the MPD systems available, the Controlled Mud Level (CML) system was selected over the Surface Back Pressure (SBP) system for several reasons. It enabled conventional gravel pack pumping operations and equipment and it accommodated the brine weight needed to inhibit the shales. A series of lab tests showed that the completion fluid density required to inhibit the reservoir shale reactivity was only possible using CML. An overall evaluation of CML showed that it was most suitable and offered the greatest flexibility for the gravel pack job design.\n The special ceramic ULWP had to be qualified and tested. The qualification testing ranged from standard API and compatibility tests to full scale flow loop testing. The flow loop tests were needed to measure the ULWP transport velocity for the target wellbore geometry. Understanding the transport velocity is critical for gravel pack design and job execution planning. Once MPD and ceramic ULWP were selected, the gravel pack placement operations were simulated to demonstrate that their features increased the likelihood of successfully gravel packing in the target reservoirs. Small PPFG margins decrease the probability of success of placing a HzOHGP. In the target formations, the pressure margin is insufficient to safely execute HzOHGP conventionally; instead, the project combined MPD and the low pump rates facilitated by using ULWP to control circulating pressures to stay inside the narrow margin and place the gravel packs. The integration of CML and ULWP into in a gravel pack operation to control circulating pressures has never been done. The concept and its successful field implementation are industry firsts.","PeriodicalId":11017,"journal":{"name":"Day 2 Wed, October 13, 2021","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Industry First: Concept Selection, Material Testing, and Modelling Process for a Successful Managed Pressure Open Hole Gravel Pack Project\",\"authors\":\"Chih-Cheng Lin, A. Tallin, Xueyong Guan, J. Kaura, Sasha F. Luces, S. Shayegi, K. W. Oyler, Ron Reutzel, M. LaPointe, Michael Teoh, T. Palisch, G. K. Wong\",\"doi\":\"10.2118/205771-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n One of the major technical challenges to this project was placing horizontal open hole gravel packs (HzOHGP) within the narrow pore pressure to frac-gradient (PPFG) margin in the target reservoirs. This paper addresses the steps taken to overcome this challenge. To maximize the use of the narrow PPFG margin, the project combined a managed pressure drilling (MPD) system with low gravel placement pump rates made possible by an ultra-light-weight proppant (ULWP). Of the MPD systems available, the Controlled Mud Level (CML) system was selected over the Surface Back Pressure (SBP) system for several reasons. It enabled conventional gravel pack pumping operations and equipment and it accommodated the brine weight needed to inhibit the shales. A series of lab tests showed that the completion fluid density required to inhibit the reservoir shale reactivity was only possible using CML. An overall evaluation of CML showed that it was most suitable and offered the greatest flexibility for the gravel pack job design.\\n The special ceramic ULWP had to be qualified and tested. The qualification testing ranged from standard API and compatibility tests to full scale flow loop testing. The flow loop tests were needed to measure the ULWP transport velocity for the target wellbore geometry. Understanding the transport velocity is critical for gravel pack design and job execution planning. Once MPD and ceramic ULWP were selected, the gravel pack placement operations were simulated to demonstrate that their features increased the likelihood of successfully gravel packing in the target reservoirs. Small PPFG margins decrease the probability of success of placing a HzOHGP. In the target formations, the pressure margin is insufficient to safely execute HzOHGP conventionally; instead, the project combined MPD and the low pump rates facilitated by using ULWP to control circulating pressures to stay inside the narrow margin and place the gravel packs. The integration of CML and ULWP into in a gravel pack operation to control circulating pressures has never been done. The concept and its successful field implementation are industry firsts.\",\"PeriodicalId\":11017,\"journal\":{\"name\":\"Day 2 Wed, October 13, 2021\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, October 13, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/205771-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 13, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205771-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Industry First: Concept Selection, Material Testing, and Modelling Process for a Successful Managed Pressure Open Hole Gravel Pack Project
One of the major technical challenges to this project was placing horizontal open hole gravel packs (HzOHGP) within the narrow pore pressure to frac-gradient (PPFG) margin in the target reservoirs. This paper addresses the steps taken to overcome this challenge. To maximize the use of the narrow PPFG margin, the project combined a managed pressure drilling (MPD) system with low gravel placement pump rates made possible by an ultra-light-weight proppant (ULWP). Of the MPD systems available, the Controlled Mud Level (CML) system was selected over the Surface Back Pressure (SBP) system for several reasons. It enabled conventional gravel pack pumping operations and equipment and it accommodated the brine weight needed to inhibit the shales. A series of lab tests showed that the completion fluid density required to inhibit the reservoir shale reactivity was only possible using CML. An overall evaluation of CML showed that it was most suitable and offered the greatest flexibility for the gravel pack job design.
The special ceramic ULWP had to be qualified and tested. The qualification testing ranged from standard API and compatibility tests to full scale flow loop testing. The flow loop tests were needed to measure the ULWP transport velocity for the target wellbore geometry. Understanding the transport velocity is critical for gravel pack design and job execution planning. Once MPD and ceramic ULWP were selected, the gravel pack placement operations were simulated to demonstrate that their features increased the likelihood of successfully gravel packing in the target reservoirs. Small PPFG margins decrease the probability of success of placing a HzOHGP. In the target formations, the pressure margin is insufficient to safely execute HzOHGP conventionally; instead, the project combined MPD and the low pump rates facilitated by using ULWP to control circulating pressures to stay inside the narrow margin and place the gravel packs. The integration of CML and ULWP into in a gravel pack operation to control circulating pressures has never been done. The concept and its successful field implementation are industry firsts.