使用监督学习方法预测乳腺癌患者的生存率

Shweta S. Kaddi , Malini M. Patil
{"title":"使用监督学习方法预测乳腺癌患者的生存率","authors":"Shweta S. Kaddi ,&nbsp;Malini M. Patil","doi":"10.1016/j.gltp.2022.04.005","DOIUrl":null,"url":null,"abstract":"<div><p>The paper aims to develop a regression model using the NKI breast cancer data set. The methodology used to achieve the objectives includes three variations of regression methods viz., linear, multiple, and polynomial, respectively. Regression analysis is one of the efficient predictive modeling methods that help understand the mathematical relationship between the variables. The multiple and polynomial regression methods also work in line with the linear regression model, but the number of independent variables will be varying. Queries related to health care data are of practical interest. The outcome of the predictive model helps in analyzing the behavior of different features of the breast cancer data set and provides useful insights towards the diagnosis of a patient. 14 out of 1570 useful features of the NKI data set are selected for the regression analysis. With different combinations of independent and dependent variables, it is found that multiple regression performs better with 83% accuracy.</p></div>","PeriodicalId":100588,"journal":{"name":"Global Transitions Proceedings","volume":"3 1","pages":"Pages 25-30"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666285X22000413/pdfft?md5=2c95660b423c6ed5ccd81c4cd695b04c&pid=1-s2.0-S2666285X22000413-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Forecasting the survival rate of breast cancer patients using a supervised learning method\",\"authors\":\"Shweta S. Kaddi ,&nbsp;Malini M. Patil\",\"doi\":\"10.1016/j.gltp.2022.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper aims to develop a regression model using the NKI breast cancer data set. The methodology used to achieve the objectives includes three variations of regression methods viz., linear, multiple, and polynomial, respectively. Regression analysis is one of the efficient predictive modeling methods that help understand the mathematical relationship between the variables. The multiple and polynomial regression methods also work in line with the linear regression model, but the number of independent variables will be varying. Queries related to health care data are of practical interest. The outcome of the predictive model helps in analyzing the behavior of different features of the breast cancer data set and provides useful insights towards the diagnosis of a patient. 14 out of 1570 useful features of the NKI data set are selected for the regression analysis. With different combinations of independent and dependent variables, it is found that multiple regression performs better with 83% accuracy.</p></div>\",\"PeriodicalId\":100588,\"journal\":{\"name\":\"Global Transitions Proceedings\",\"volume\":\"3 1\",\"pages\":\"Pages 25-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666285X22000413/pdfft?md5=2c95660b423c6ed5ccd81c4cd695b04c&pid=1-s2.0-S2666285X22000413-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Transitions Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666285X22000413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Transitions Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666285X22000413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文旨在利用NKI乳腺癌数据集建立一个回归模型。用于实现目标的方法包括回归方法的三种变体,即线性、多元和多项式。回归分析是一种有效的预测建模方法,有助于理解变量之间的数学关系。多元回归和多项式回归方法也与线性回归模型一致,但自变量的数量会发生变化。与卫生保健数据相关的查询具有实际意义。预测模型的结果有助于分析乳腺癌数据集的不同特征的行为,并为患者的诊断提供有用的见解。从NKI数据集的1570个有用特征中选择14个进行回归分析。对于不同的自变量和因变量组合,发现多元回归表现更好,准确率为83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting the survival rate of breast cancer patients using a supervised learning method

The paper aims to develop a regression model using the NKI breast cancer data set. The methodology used to achieve the objectives includes three variations of regression methods viz., linear, multiple, and polynomial, respectively. Regression analysis is one of the efficient predictive modeling methods that help understand the mathematical relationship between the variables. The multiple and polynomial regression methods also work in line with the linear regression model, but the number of independent variables will be varying. Queries related to health care data are of practical interest. The outcome of the predictive model helps in analyzing the behavior of different features of the breast cancer data set and provides useful insights towards the diagnosis of a patient. 14 out of 1570 useful features of the NKI data set are selected for the regression analysis. With different combinations of independent and dependent variables, it is found that multiple regression performs better with 83% accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Energy Efficient Secure Routing Protocol for Mobile Ad-Hoc Network Grid interconnected H-bridge multilevel inverter for renewable power applications using repeating units and level boosting network Power Generation Using Ocean Waves: A Review Development of an Arabic HQAS-based ASAG to consider an ignored knowledge in misspelled multiple words short answers Smartphone assist deep neural network to detect the citrus diseases in Agri-informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1