学习具有多向边的线性非高斯图形模型

IF 1.7 4区 医学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Causal Inference Pub Date : 2020-10-11 DOI:10.1515/jci-2020-0027
Yiheng Liu, Elina Robeva, Huanqing Wang
{"title":"学习具有多向边的线性非高斯图形模型","authors":"Yiheng Liu, Elina Robeva, Huanqing Wang","doi":"10.1515/jci-2020-0027","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we propose a new method to learn the underlying acyclic mixed graph of a linear non-Gaussian structural equation model with given observational data. We build on an algorithm proposed by Wang and Drton, and we show that one can augment the hidden variable structure of the recovered model by learning multidirected edges rather than only directed and bidirected ones. Multidirected edges appear when more than two of the observed variables have a hidden common cause. We detect the presence of such hidden causes by looking at higher order cumulants and exploiting the multi-trek rule. Our method recovers the correct structure when the underlying graph is a bow-free acyclic mixed graph with potential multidirected edges.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"12 1","pages":"250 - 263"},"PeriodicalIF":1.7000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning linear non-Gaussian graphical models with multidirected edges\",\"authors\":\"Yiheng Liu, Elina Robeva, Huanqing Wang\",\"doi\":\"10.1515/jci-2020-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we propose a new method to learn the underlying acyclic mixed graph of a linear non-Gaussian structural equation model with given observational data. We build on an algorithm proposed by Wang and Drton, and we show that one can augment the hidden variable structure of the recovered model by learning multidirected edges rather than only directed and bidirected ones. Multidirected edges appear when more than two of the observed variables have a hidden common cause. We detect the presence of such hidden causes by looking at higher order cumulants and exploiting the multi-trek rule. Our method recovers the correct structure when the underlying graph is a bow-free acyclic mixed graph with potential multidirected edges.\",\"PeriodicalId\":48576,\"journal\":{\"name\":\"Journal of Causal Inference\",\"volume\":\"12 1\",\"pages\":\"250 - 263\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Causal Inference\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/jci-2020-0027\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2020-0027","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的方法来学习具有给定观测数据的线性非高斯结构方程模型的底层无环混合图。我们在Wang和Drton提出的算法的基础上,证明了可以通过学习多向边来增强恢复模型的隐变量结构,而不仅仅是有向边和双向边。当两个以上的观测变量有一个隐藏的共同原因时,就会出现多向边。我们通过观察高阶累积量和利用多重跋涉规则来检测这些隐藏原因的存在。当底层图是具有潜在多向边的无弓无环混合图时,我们的方法恢复了正确的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning linear non-Gaussian graphical models with multidirected edges
Abstract In this article, we propose a new method to learn the underlying acyclic mixed graph of a linear non-Gaussian structural equation model with given observational data. We build on an algorithm proposed by Wang and Drton, and we show that one can augment the hidden variable structure of the recovered model by learning multidirected edges rather than only directed and bidirected ones. Multidirected edges appear when more than two of the observed variables have a hidden common cause. We detect the presence of such hidden causes by looking at higher order cumulants and exploiting the multi-trek rule. Our method recovers the correct structure when the underlying graph is a bow-free acyclic mixed graph with potential multidirected edges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Causal Inference
Journal of Causal Inference Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
14.30%
发文量
15
审稿时长
86 weeks
期刊介绍: Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.
期刊最新文献
Evaluating Boolean relationships in Configurational Comparative Methods Comparison of open-source software for producing directed acyclic graphs. LINGUISTIC FEATURES AND PRESENTATION OF MATERIALS ON ENGLISH TEXTBOOK “WHEN ENGLISH RINGS A BELL” BASED ON BSNP Heterogeneous interventional effects with multiple mediators: Semiparametric and nonparametric approaches Attributable fraction and related measures: Conceptual relations in the counterfactual framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1