{"title":"一种用于焊缝自动跟踪系统的鲁棒检测器","authors":"Yanbiao Zou, Mingquan Zhu, Xiangzhi Chen","doi":"10.1115/1.4049547","DOIUrl":null,"url":null,"abstract":"\n Accurate locating of the weld seam under strong noise is the biggest challenge for automated welding. In this paper, we construct a robust seam detector on the framework of deep learning object detection algorithm. The representative object algorithm, a single shot multibox detector (SSD), is studied to establish the seam detector framework. The improved SSD is applied to seam detection. Under the SSD object detection framework, combined with the characteristics of the seam detection task, the multifeature combination network (MFCN) is proposed. The network comprehensively utilizes the local information and global information carried by the multilayer features to detect a weld seam and realizes the rapid and accurate detection of the weld seam. To solve the problem of single-frame seam image detection algorithm failure under continuous super-strong noise, the sequence image multifeature combination network (SMFCN) is proposed based on the MFCN detector. The recurrent neural network (RNN) is used to learn the temporal context information of convolutional features to accurately detect the seam under continuous super-noise. Experimental results show that the proposed seam detectors are extremely robust. The SMFCN can maintain extremely high detection accuracy under continuous super-strong noise. The welding results show that the laser vision seam tracking system using the SMFCN can ensure that the welding precision meets industrial requirements under a welding current of 150 A.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Robust Detector for Automated Welding Seam Tracking System\",\"authors\":\"Yanbiao Zou, Mingquan Zhu, Xiangzhi Chen\",\"doi\":\"10.1115/1.4049547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Accurate locating of the weld seam under strong noise is the biggest challenge for automated welding. In this paper, we construct a robust seam detector on the framework of deep learning object detection algorithm. The representative object algorithm, a single shot multibox detector (SSD), is studied to establish the seam detector framework. The improved SSD is applied to seam detection. Under the SSD object detection framework, combined with the characteristics of the seam detection task, the multifeature combination network (MFCN) is proposed. The network comprehensively utilizes the local information and global information carried by the multilayer features to detect a weld seam and realizes the rapid and accurate detection of the weld seam. To solve the problem of single-frame seam image detection algorithm failure under continuous super-strong noise, the sequence image multifeature combination network (SMFCN) is proposed based on the MFCN detector. The recurrent neural network (RNN) is used to learn the temporal context information of convolutional features to accurately detect the seam under continuous super-noise. Experimental results show that the proposed seam detectors are extremely robust. The SMFCN can maintain extremely high detection accuracy under continuous super-strong noise. The welding results show that the laser vision seam tracking system using the SMFCN can ensure that the welding precision meets industrial requirements under a welding current of 150 A.\",\"PeriodicalId\":54846,\"journal\":{\"name\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4049547\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4049547","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A Robust Detector for Automated Welding Seam Tracking System
Accurate locating of the weld seam under strong noise is the biggest challenge for automated welding. In this paper, we construct a robust seam detector on the framework of deep learning object detection algorithm. The representative object algorithm, a single shot multibox detector (SSD), is studied to establish the seam detector framework. The improved SSD is applied to seam detection. Under the SSD object detection framework, combined with the characteristics of the seam detection task, the multifeature combination network (MFCN) is proposed. The network comprehensively utilizes the local information and global information carried by the multilayer features to detect a weld seam and realizes the rapid and accurate detection of the weld seam. To solve the problem of single-frame seam image detection algorithm failure under continuous super-strong noise, the sequence image multifeature combination network (SMFCN) is proposed based on the MFCN detector. The recurrent neural network (RNN) is used to learn the temporal context information of convolutional features to accurately detect the seam under continuous super-noise. Experimental results show that the proposed seam detectors are extremely robust. The SMFCN can maintain extremely high detection accuracy under continuous super-strong noise. The welding results show that the laser vision seam tracking system using the SMFCN can ensure that the welding precision meets industrial requirements under a welding current of 150 A.
期刊介绍:
The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.