{"title":"钨矿作为含钽伟晶岩和花岗岩的指示矿物","authors":"V. Alekseev","doi":"10.31897/pmi.2023.19","DOIUrl":null,"url":null,"abstract":"In the composition of tantalum-niobates the tin-bearing wodginite group minerals (WGM) were found: wod-ginite, titanowodginite, ferrowodginite, ferrotitanowodginite, lithiowodginite, tantalowodginite, “wolframowodginite”. We reviewed the worldwide research on WGM and created a database of 698 analyses from 55 sources including the author's data. WGM are associated with Li-F pegmatites and Li-F granites. Wodginite is the most prevalent mineral, occurring in 86.6 % of pegmatites and 78.3 % of granites. The occurrence of WGM in granites and pegmatites differs. For instance, titanowodginite and “wolframowodginite” occur three times more frequently in granites than in pegmatites, whereas lithiowodginite and tantalowodginite do not appear in granites at all. The difference between WGM in granites and pegmatites is in finer grain size, higher content of Sn, Nb, Ti, W, and Sc; lower content of Fe3+, Ta, Zr, Hf; higher ratio of Mn/(Mn + Fe); and lower ratio of Zr/Hf. The evolutionary series of WGM in pegmatites are as follows: ferrowodginite → ferrotitanowodginite → titanowodginite → “wolframowodginite” → wodginite → tantalowodginite; in granites: ferrowodginite → ferrotitanowodginite → “wolframowodginite” → wodginite → titanowodginite. WGM can serve as indicators of tantalum-bearing pegmatites and granites. In Russia the promising sources of tantalum are deposits of the Far Eastern belt of Li-F granites containing wodginite.","PeriodicalId":16398,"journal":{"name":"Journal of Mining Institute","volume":"40 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wodginite as an indicator mineral of tantalum-bearing pegmatites and granites\",\"authors\":\"V. Alekseev\",\"doi\":\"10.31897/pmi.2023.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the composition of tantalum-niobates the tin-bearing wodginite group minerals (WGM) were found: wod-ginite, titanowodginite, ferrowodginite, ferrotitanowodginite, lithiowodginite, tantalowodginite, “wolframowodginite”. We reviewed the worldwide research on WGM and created a database of 698 analyses from 55 sources including the author's data. WGM are associated with Li-F pegmatites and Li-F granites. Wodginite is the most prevalent mineral, occurring in 86.6 % of pegmatites and 78.3 % of granites. The occurrence of WGM in granites and pegmatites differs. For instance, titanowodginite and “wolframowodginite” occur three times more frequently in granites than in pegmatites, whereas lithiowodginite and tantalowodginite do not appear in granites at all. The difference between WGM in granites and pegmatites is in finer grain size, higher content of Sn, Nb, Ti, W, and Sc; lower content of Fe3+, Ta, Zr, Hf; higher ratio of Mn/(Mn + Fe); and lower ratio of Zr/Hf. The evolutionary series of WGM in pegmatites are as follows: ferrowodginite → ferrotitanowodginite → titanowodginite → “wolframowodginite” → wodginite → tantalowodginite; in granites: ferrowodginite → ferrotitanowodginite → “wolframowodginite” → wodginite → titanowodginite. WGM can serve as indicators of tantalum-bearing pegmatites and granites. In Russia the promising sources of tantalum are deposits of the Far Eastern belt of Li-F granites containing wodginite.\",\"PeriodicalId\":16398,\"journal\":{\"name\":\"Journal of Mining Institute\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31897/pmi.2023.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31897/pmi.2023.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
Wodginite as an indicator mineral of tantalum-bearing pegmatites and granites
In the composition of tantalum-niobates the tin-bearing wodginite group minerals (WGM) were found: wod-ginite, titanowodginite, ferrowodginite, ferrotitanowodginite, lithiowodginite, tantalowodginite, “wolframowodginite”. We reviewed the worldwide research on WGM and created a database of 698 analyses from 55 sources including the author's data. WGM are associated with Li-F pegmatites and Li-F granites. Wodginite is the most prevalent mineral, occurring in 86.6 % of pegmatites and 78.3 % of granites. The occurrence of WGM in granites and pegmatites differs. For instance, titanowodginite and “wolframowodginite” occur three times more frequently in granites than in pegmatites, whereas lithiowodginite and tantalowodginite do not appear in granites at all. The difference between WGM in granites and pegmatites is in finer grain size, higher content of Sn, Nb, Ti, W, and Sc; lower content of Fe3+, Ta, Zr, Hf; higher ratio of Mn/(Mn + Fe); and lower ratio of Zr/Hf. The evolutionary series of WGM in pegmatites are as follows: ferrowodginite → ferrotitanowodginite → titanowodginite → “wolframowodginite” → wodginite → tantalowodginite; in granites: ferrowodginite → ferrotitanowodginite → “wolframowodginite” → wodginite → titanowodginite. WGM can serve as indicators of tantalum-bearing pegmatites and granites. In Russia the promising sources of tantalum are deposits of the Far Eastern belt of Li-F granites containing wodginite.