V. Sadykov, M. Arapova, E. Smal, S. Pavlova, L. Bobrova, N. Eremeev, N. Mezentseva, M. Simonov
{"title":"将生物燃料转化为合成气和氢气的纳米复合催化剂:设计和性能的基础,在结构反应器和催化膜中的应用","authors":"V. Sadykov, M. Arapova, E. Smal, S. Pavlova, L. Bobrova, N. Eremeev, N. Mezentseva, M. Simonov","doi":"10.1039/9781788016971-00216","DOIUrl":null,"url":null,"abstract":"In this review problems related to design and performance of stable and efficient catalysts of biogas/biofuels transformation into syngas and hydrogen based on nanocrystalline oxides with fluorite, perovskite and spinel oxides and their nanocomposites promoted by nanoparticles of Pt group metals and Ni-based alloys are considered. Tailor-made design of these catalysts is based upon elucidation of the relationships between their synthesis procedure, composition, real structure/microstructure, surface properties, oxygen mobility and reactivity determined in a great extent by the metal–support interaction, which requires application of modern sophisticated structural, spectroscopic, kinetic (including in situ FTIRS and isotope transients) methods and mathematical modeling. Thin layers of these optimized catalysts supported on structured heat-conducting substrates, asymmetric supported oxygen or hydrogen separation membranes demonstrated high and stable performance in transformation of biogas and biofuels into syngas and hydrogen.","PeriodicalId":43717,"journal":{"name":"Catalysis Structure & Reactivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Nanocomposite catalysts for transformation of biofuels into syngas and hydrogen: fundamentals of design and performance, application in structured reactors and catalytic membranes\",\"authors\":\"V. Sadykov, M. Arapova, E. Smal, S. Pavlova, L. Bobrova, N. Eremeev, N. Mezentseva, M. Simonov\",\"doi\":\"10.1039/9781788016971-00216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this review problems related to design and performance of stable and efficient catalysts of biogas/biofuels transformation into syngas and hydrogen based on nanocrystalline oxides with fluorite, perovskite and spinel oxides and their nanocomposites promoted by nanoparticles of Pt group metals and Ni-based alloys are considered. Tailor-made design of these catalysts is based upon elucidation of the relationships between their synthesis procedure, composition, real structure/microstructure, surface properties, oxygen mobility and reactivity determined in a great extent by the metal–support interaction, which requires application of modern sophisticated structural, spectroscopic, kinetic (including in situ FTIRS and isotope transients) methods and mathematical modeling. Thin layers of these optimized catalysts supported on structured heat-conducting substrates, asymmetric supported oxygen or hydrogen separation membranes demonstrated high and stable performance in transformation of biogas and biofuels into syngas and hydrogen.\",\"PeriodicalId\":43717,\"journal\":{\"name\":\"Catalysis Structure & Reactivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Structure & Reactivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/9781788016971-00216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Structure & Reactivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788016971-00216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Nanocomposite catalysts for transformation of biofuels into syngas and hydrogen: fundamentals of design and performance, application in structured reactors and catalytic membranes
In this review problems related to design and performance of stable and efficient catalysts of biogas/biofuels transformation into syngas and hydrogen based on nanocrystalline oxides with fluorite, perovskite and spinel oxides and their nanocomposites promoted by nanoparticles of Pt group metals and Ni-based alloys are considered. Tailor-made design of these catalysts is based upon elucidation of the relationships between their synthesis procedure, composition, real structure/microstructure, surface properties, oxygen mobility and reactivity determined in a great extent by the metal–support interaction, which requires application of modern sophisticated structural, spectroscopic, kinetic (including in situ FTIRS and isotope transients) methods and mathematical modeling. Thin layers of these optimized catalysts supported on structured heat-conducting substrates, asymmetric supported oxygen or hydrogen separation membranes demonstrated high and stable performance in transformation of biogas and biofuels into syngas and hydrogen.