使用遗传算法训练Elman和Jordan网络进行系统识别

D.T Pham, D Karaboga
{"title":"使用遗传算法训练Elman和Jordan网络进行系统识别","authors":"D.T Pham,&nbsp;D Karaboga","doi":"10.1016/S0954-1810(98)00013-2","DOIUrl":null,"url":null,"abstract":"<div><p>Two of the well-known recurrent neural networks are the Elman network and the Jordan network. Recently, modifications have been made to these networks to facilitate their applications in dynamic systems identification. Both the original and the modified networks have trainable feedforward connections. However, in order that they can be trained essentially as feedforward networks by means of the simple backpropagation algorithm, their feedback connections have to be kept constant. For the training to converge, it is important to select correct values for the feedback connections, but finding these values manually can be a lengthy trial-and-error process. This paper describes the use of genetic algorithms (GAs) to train the Elman and Jordan networks for dynamic systems identification. The GA is an efficient, guided, random search procedure which can simultaneously obtain the optimal weights of both the feedforward and feedback connections.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":"13 2","pages":"Pages 107-117"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(98)00013-2","citationCount":"88","resultStr":"{\"title\":\"Training Elman and Jordan networks for system identification using genetic algorithms\",\"authors\":\"D.T Pham,&nbsp;D Karaboga\",\"doi\":\"10.1016/S0954-1810(98)00013-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two of the well-known recurrent neural networks are the Elman network and the Jordan network. Recently, modifications have been made to these networks to facilitate their applications in dynamic systems identification. Both the original and the modified networks have trainable feedforward connections. However, in order that they can be trained essentially as feedforward networks by means of the simple backpropagation algorithm, their feedback connections have to be kept constant. For the training to converge, it is important to select correct values for the feedback connections, but finding these values manually can be a lengthy trial-and-error process. This paper describes the use of genetic algorithms (GAs) to train the Elman and Jordan networks for dynamic systems identification. The GA is an efficient, guided, random search procedure which can simultaneously obtain the optimal weights of both the feedforward and feedback connections.</p></div>\",\"PeriodicalId\":100123,\"journal\":{\"name\":\"Artificial Intelligence in Engineering\",\"volume\":\"13 2\",\"pages\":\"Pages 107-117\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0954-1810(98)00013-2\",\"citationCount\":\"88\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0954181098000132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954181098000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

摘要

两个著名的递归神经网络是Elman网络和Jordan网络。最近,对这些网络进行了修改,以促进它们在动态系统识别中的应用。原始网络和改进后的网络都具有可训练的前馈连接。然而,为了使它们能够通过简单的反向传播算法训练为本质上的前馈网络,它们的反馈连接必须保持恒定。为了使训练收敛,为反馈连接选择正确的值是很重要的,但是手动找到这些值可能是一个漫长的试错过程。本文描述了使用遗传算法(GAs)来训练Elman和Jordan网络用于动态系统识别。遗传算法是一种有效的、引导的、随机的搜索过程,它可以同时获得前馈和反馈连接的最优权值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Training Elman and Jordan networks for system identification using genetic algorithms

Two of the well-known recurrent neural networks are the Elman network and the Jordan network. Recently, modifications have been made to these networks to facilitate their applications in dynamic systems identification. Both the original and the modified networks have trainable feedforward connections. However, in order that they can be trained essentially as feedforward networks by means of the simple backpropagation algorithm, their feedback connections have to be kept constant. For the training to converge, it is important to select correct values for the feedback connections, but finding these values manually can be a lengthy trial-and-error process. This paper describes the use of genetic algorithms (GAs) to train the Elman and Jordan networks for dynamic systems identification. The GA is an efficient, guided, random search procedure which can simultaneously obtain the optimal weights of both the feedforward and feedback connections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Volume Contents Simulating behaviors of human situation awareness under high workloads Emergent synthesis of motion patterns for locomotion robots Synthesis and emergence — research overview Concept of self-reconfigurable modular robotic system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1