{"title":"空域监视系统中雷达信息的分布式处理","authors":"I.V. Svyd, S.V. Starokozhev","doi":"10.30837/rt.2023.1.212.15","DOIUrl":null,"url":null,"abstract":"The work is dedicated to the analysis of the quality of combining assessments of the radar signals and airborne objects detections in the implementation of distributed processing of radar information of airspace surveillance systems. The main sources of radar information about the air situation in the airspace control system are primary surveillance radars, secondary radar systems and identification systems on the basis of \"friend or foe\". It should be noted that the analysis of the information security of single-position radars shows their vulnerability in a wide range of unintentional and intentional interference, as well as determining their location. This is due to the ease of detection of the emitting transmitter of the probing signal in single-position radars. It led to the main disadvantage of single-position radars – low noise immunity and low survivability. The transition to a network of radar systems can significantly reduce the impact of deliberately directed interference. It also allows the use of methods for distributed processing of radar information in airspace surveillance systems. \nAnalysis of the effectiveness of information support algorithms based on distributed processing of radar information of airspace surveillance systems, taking into account the final result, makes it possible to detect airborne objects using a packet of binary-quantized signals, taking into account two algorithms for combining detection results: channel accumulation and combining results; association of channel solutions and accumulation. It shows following: – the quality of consumer information support based on the proposed structure is much higher compared to the used radar information processing structure; the quality of information support for consumers has the best performance when using the signal processing method based on the accumulation of signals with the subsequent combination of detection results; the availability factor of the aircraft transponder significantly affects the quality of information support, already at P0<0.9 the use of integer logic for combining detection information is undesirable.","PeriodicalId":41675,"journal":{"name":"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed processing of radar information in airspace surveillance systems\",\"authors\":\"I.V. Svyd, S.V. Starokozhev\",\"doi\":\"10.30837/rt.2023.1.212.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work is dedicated to the analysis of the quality of combining assessments of the radar signals and airborne objects detections in the implementation of distributed processing of radar information of airspace surveillance systems. The main sources of radar information about the air situation in the airspace control system are primary surveillance radars, secondary radar systems and identification systems on the basis of \\\"friend or foe\\\". It should be noted that the analysis of the information security of single-position radars shows their vulnerability in a wide range of unintentional and intentional interference, as well as determining their location. This is due to the ease of detection of the emitting transmitter of the probing signal in single-position radars. It led to the main disadvantage of single-position radars – low noise immunity and low survivability. The transition to a network of radar systems can significantly reduce the impact of deliberately directed interference. It also allows the use of methods for distributed processing of radar information in airspace surveillance systems. \\nAnalysis of the effectiveness of information support algorithms based on distributed processing of radar information of airspace surveillance systems, taking into account the final result, makes it possible to detect airborne objects using a packet of binary-quantized signals, taking into account two algorithms for combining detection results: channel accumulation and combining results; association of channel solutions and accumulation. It shows following: – the quality of consumer information support based on the proposed structure is much higher compared to the used radar information processing structure; the quality of information support for consumers has the best performance when using the signal processing method based on the accumulation of signals with the subsequent combination of detection results; the availability factor of the aircraft transponder significantly affects the quality of information support, already at P0<0.9 the use of integer logic for combining detection information is undesirable.\",\"PeriodicalId\":41675,\"journal\":{\"name\":\"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30837/rt.2023.1.212.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30837/rt.2023.1.212.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Distributed processing of radar information in airspace surveillance systems
The work is dedicated to the analysis of the quality of combining assessments of the radar signals and airborne objects detections in the implementation of distributed processing of radar information of airspace surveillance systems. The main sources of radar information about the air situation in the airspace control system are primary surveillance radars, secondary radar systems and identification systems on the basis of "friend or foe". It should be noted that the analysis of the information security of single-position radars shows their vulnerability in a wide range of unintentional and intentional interference, as well as determining their location. This is due to the ease of detection of the emitting transmitter of the probing signal in single-position radars. It led to the main disadvantage of single-position radars – low noise immunity and low survivability. The transition to a network of radar systems can significantly reduce the impact of deliberately directed interference. It also allows the use of methods for distributed processing of radar information in airspace surveillance systems.
Analysis of the effectiveness of information support algorithms based on distributed processing of radar information of airspace surveillance systems, taking into account the final result, makes it possible to detect airborne objects using a packet of binary-quantized signals, taking into account two algorithms for combining detection results: channel accumulation and combining results; association of channel solutions and accumulation. It shows following: – the quality of consumer information support based on the proposed structure is much higher compared to the used radar information processing structure; the quality of information support for consumers has the best performance when using the signal processing method based on the accumulation of signals with the subsequent combination of detection results; the availability factor of the aircraft transponder significantly affects the quality of information support, already at P0<0.9 the use of integer logic for combining detection information is undesirable.