{"title":"锆基镧系氮化物的溶解及化学分析","authors":"H. Hayashi, Rikiya Chiba","doi":"10.15669/PNST.5.196","DOIUrl":null,"url":null,"abstract":"Dissolution behavior of Zr-based lanthanide nitride solid solutions, which are surrogates of Zr-based transuranium nitrides, in nitric acid was examined. Powder sample of the matrix material, ZrN was completely dissolved with 7.4 mol/L HNO3 at 383 K in 20 hours or 7.7 mol/L HNO3 at room temperature in 134 days. LnN-ZrN solid solutions were completely dissolved with milder conditions; 0.25GdN-0.75ZrN was with 7.5 mol/L HNO3 in 6 days, and 0.40DyN-0.60ZrN was with 7.7 mol/L HNO3 in 1 day or 1.0 mol/L in 20 days at room temperature. These results suggest that it became easier to dissolve LnN-ZrN solid solution with increasing the contents of LnN. From chemical analysis of LnN-ZrN samples, a change of the metal compositions during pellet sample fabrication process was observed for 0.40DyN-0.60ZrN, though not for 0.25GdN-0.75ZrN. The change of the metal composition in 0.40DyN-0.60ZrN sample is considered to be due to vaporization of Dy during the heating process.","PeriodicalId":20706,"journal":{"name":"Progress in Nuclear Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissolution and chemical analysis of Zr-based lanthanide nitrides\",\"authors\":\"H. Hayashi, Rikiya Chiba\",\"doi\":\"10.15669/PNST.5.196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dissolution behavior of Zr-based lanthanide nitride solid solutions, which are surrogates of Zr-based transuranium nitrides, in nitric acid was examined. Powder sample of the matrix material, ZrN was completely dissolved with 7.4 mol/L HNO3 at 383 K in 20 hours or 7.7 mol/L HNO3 at room temperature in 134 days. LnN-ZrN solid solutions were completely dissolved with milder conditions; 0.25GdN-0.75ZrN was with 7.5 mol/L HNO3 in 6 days, and 0.40DyN-0.60ZrN was with 7.7 mol/L HNO3 in 1 day or 1.0 mol/L in 20 days at room temperature. These results suggest that it became easier to dissolve LnN-ZrN solid solution with increasing the contents of LnN. From chemical analysis of LnN-ZrN samples, a change of the metal compositions during pellet sample fabrication process was observed for 0.40DyN-0.60ZrN, though not for 0.25GdN-0.75ZrN. The change of the metal composition in 0.40DyN-0.60ZrN sample is considered to be due to vaporization of Dy during the heating process.\",\"PeriodicalId\":20706,\"journal\":{\"name\":\"Progress in Nuclear Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15669/PNST.5.196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15669/PNST.5.196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dissolution and chemical analysis of Zr-based lanthanide nitrides
Dissolution behavior of Zr-based lanthanide nitride solid solutions, which are surrogates of Zr-based transuranium nitrides, in nitric acid was examined. Powder sample of the matrix material, ZrN was completely dissolved with 7.4 mol/L HNO3 at 383 K in 20 hours or 7.7 mol/L HNO3 at room temperature in 134 days. LnN-ZrN solid solutions were completely dissolved with milder conditions; 0.25GdN-0.75ZrN was with 7.5 mol/L HNO3 in 6 days, and 0.40DyN-0.60ZrN was with 7.7 mol/L HNO3 in 1 day or 1.0 mol/L in 20 days at room temperature. These results suggest that it became easier to dissolve LnN-ZrN solid solution with increasing the contents of LnN. From chemical analysis of LnN-ZrN samples, a change of the metal compositions during pellet sample fabrication process was observed for 0.40DyN-0.60ZrN, though not for 0.25GdN-0.75ZrN. The change of the metal composition in 0.40DyN-0.60ZrN sample is considered to be due to vaporization of Dy during the heating process.