异常预测控制中优化的人工神经网络模型和补偿器

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Dynamic Systems Measurement and Control-Transactions of the Asme Pub Date : 2021-05-01 DOI:10.1115/1.4049130
Seong Hyeon Hong, Jackson Cornelius, Yi Wang, K. Pant
{"title":"异常预测控制中优化的人工神经网络模型和补偿器","authors":"Seong Hyeon Hong, Jackson Cornelius, Yi Wang, K. Pant","doi":"10.1115/1.4049130","DOIUrl":null,"url":null,"abstract":"\n This paper presents a new artificial neural network (ANN)-based system model that concatenates an optimized artificial neural network (OANN) and a neural network compensator (NNC) in series to capture temporally varying system dynamics caused by slow-paced degradation/anomaly. The OANN comprises a complex, fully connected multilayer perceptron, trained offline using nominal, anomaly free data, and remains unchanged during online operation. Its hyperparameters are selected using genetic algorithm-based meta-optimization. The compact NNC is updated continuously online using collected sensor data to capture the variations in system dynamics, rectify the OANN prediction, and eventually minimize the discrepancy between the OANN-predicted and actual response. The combined OANN–NNC model then reconfigures the model predictive control (MPC) online to alleviate disturbances. Through numerical simulation using an unmanned quadrotor as an example, the proposed model demonstrates salient capabilities to mitigate anomalies introduced to the system while maintaining control performance. We compare the OANN–NNC with other online modeling techniques (adaptive ANN and multinetwork model), showing it outperforms them in reference tracking of altitude control by at least 0.5 m and yaw control by 1 deg. Moreover, its robustness is confirmed by the MPC consistency regardless of anomaly presence, eliminating the need for additional model management during online operation.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Optimized Artificial Neural Network Model and Compensator in Model Predictive Control for Anomaly Mitigation\",\"authors\":\"Seong Hyeon Hong, Jackson Cornelius, Yi Wang, K. Pant\",\"doi\":\"10.1115/1.4049130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents a new artificial neural network (ANN)-based system model that concatenates an optimized artificial neural network (OANN) and a neural network compensator (NNC) in series to capture temporally varying system dynamics caused by slow-paced degradation/anomaly. The OANN comprises a complex, fully connected multilayer perceptron, trained offline using nominal, anomaly free data, and remains unchanged during online operation. Its hyperparameters are selected using genetic algorithm-based meta-optimization. The compact NNC is updated continuously online using collected sensor data to capture the variations in system dynamics, rectify the OANN prediction, and eventually minimize the discrepancy between the OANN-predicted and actual response. The combined OANN–NNC model then reconfigures the model predictive control (MPC) online to alleviate disturbances. Through numerical simulation using an unmanned quadrotor as an example, the proposed model demonstrates salient capabilities to mitigate anomalies introduced to the system while maintaining control performance. We compare the OANN–NNC with other online modeling techniques (adaptive ANN and multinetwork model), showing it outperforms them in reference tracking of altitude control by at least 0.5 m and yaw control by 1 deg. Moreover, its robustness is confirmed by the MPC consistency regardless of anomaly presence, eliminating the need for additional model management during online operation.\",\"PeriodicalId\":54846,\"journal\":{\"name\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4049130\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4049130","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种新的基于人工神经网络(ANN)的系统模型,该模型将优化后的人工神经网络(OANN)和神经网络补偿器(NNC)串联起来,以捕捉由慢速退化/异常引起的系统动态变化。OANN包括一个复杂的、全连接的多层感知器,使用标称的、无异常的数据进行离线训练,并在在线运行期间保持不变。采用基于遗传算法的元优化方法选择其超参数。紧凑的NNC使用收集的传感器数据不断在线更新,以捕获系统动力学的变化,纠正OANN预测,并最终最小化OANN预测与实际响应之间的差异。然后,组合OANN-NNC模型在线重新配置模型预测控制(MPC)以减轻干扰。通过以无人驾驶四旋翼飞行器为例的数值模拟,所提出的模型展示了显著的能力,以减轻引入系统的异常,同时保持控制性能。我们将OANN-NNC与其他在线建模技术(自适应神经网络和多网络模型)进行了比较,表明它在参考跟踪高度控制至少0.5 m和偏航控制1度方面优于它们。此外,无论异常存在与否,其鲁棒性都得到了MPC一致性的证实,从而消除了在线运行期间额外模型管理的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized Artificial Neural Network Model and Compensator in Model Predictive Control for Anomaly Mitigation
This paper presents a new artificial neural network (ANN)-based system model that concatenates an optimized artificial neural network (OANN) and a neural network compensator (NNC) in series to capture temporally varying system dynamics caused by slow-paced degradation/anomaly. The OANN comprises a complex, fully connected multilayer perceptron, trained offline using nominal, anomaly free data, and remains unchanged during online operation. Its hyperparameters are selected using genetic algorithm-based meta-optimization. The compact NNC is updated continuously online using collected sensor data to capture the variations in system dynamics, rectify the OANN prediction, and eventually minimize the discrepancy between the OANN-predicted and actual response. The combined OANN–NNC model then reconfigures the model predictive control (MPC) online to alleviate disturbances. Through numerical simulation using an unmanned quadrotor as an example, the proposed model demonstrates salient capabilities to mitigate anomalies introduced to the system while maintaining control performance. We compare the OANN–NNC with other online modeling techniques (adaptive ANN and multinetwork model), showing it outperforms them in reference tracking of altitude control by at least 0.5 m and yaw control by 1 deg. Moreover, its robustness is confirmed by the MPC consistency regardless of anomaly presence, eliminating the need for additional model management during online operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
11.80%
发文量
79
审稿时长
24.0 months
期刊介绍: The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.
期刊最新文献
Spiking-Free Disturbance Observer-Based Sliding-Mode Control for Mismatched Uncertain System Current Imbalance in Dissimilar Parallel-Connected Batteries and the Fate of Degradation Convergence Self-Optimizing Vapor Compression Cycles Online With Bayesian Optimization Under Local Search Region Constraints Nonlinear Temperature Control of Additive Friction Stir Deposition Evaluated On an Echo State Network Closed-Loop Control and Plant Co-Design of a Hybrid Electric Unmanned Air Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1