基于本质可切换铁电BST fbar的BAW滤波器设计方法

Seungku Lee, A. Mortazawi
{"title":"基于本质可切换铁电BST fbar的BAW滤波器设计方法","authors":"Seungku Lee, A. Mortazawi","doi":"10.1109/MWSYM.2016.7540105","DOIUrl":null,"url":null,"abstract":"A design method for BAW filters based on intrinsically switchable ferroelectric BST FBARs is presented. A complete set of design equations for ladder-type FBAR filters is derived based on the popular filter synthesis method using image parameters. For the first time, a complete analysis is performed that accurately calculates both the image impedance and propagation constant for BAW filters. Closed-form design equations as a function of FBAR and filter specifications are provided. As an experimental verification, a 1.5-stage switchable ferroelectric BST FBAR filter is designed, fabricated, and measured. When a dc bias is applied, a switchable filter is in its on-state and provides an insertion loss of 5.77 dB with a fractional bandwidth of 1.22% at 1.97 GHz. When in its off-state, the filter exhibits more than 22 dB isolation. Circuit-level simulation results are in very good agreement with the measurement results, validating the proposed BAW filter design method.","PeriodicalId":6554,"journal":{"name":"2016 IEEE MTT-S International Microwave Symposium (IMS)","volume":"28 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"BAW filter design method based on intrinsically switchable ferroelectric BST FBARs\",\"authors\":\"Seungku Lee, A. Mortazawi\",\"doi\":\"10.1109/MWSYM.2016.7540105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A design method for BAW filters based on intrinsically switchable ferroelectric BST FBARs is presented. A complete set of design equations for ladder-type FBAR filters is derived based on the popular filter synthesis method using image parameters. For the first time, a complete analysis is performed that accurately calculates both the image impedance and propagation constant for BAW filters. Closed-form design equations as a function of FBAR and filter specifications are provided. As an experimental verification, a 1.5-stage switchable ferroelectric BST FBAR filter is designed, fabricated, and measured. When a dc bias is applied, a switchable filter is in its on-state and provides an insertion loss of 5.77 dB with a fractional bandwidth of 1.22% at 1.97 GHz. When in its off-state, the filter exhibits more than 22 dB isolation. Circuit-level simulation results are in very good agreement with the measurement results, validating the proposed BAW filter design method.\",\"PeriodicalId\":6554,\"journal\":{\"name\":\"2016 IEEE MTT-S International Microwave Symposium (IMS)\",\"volume\":\"28 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE MTT-S International Microwave Symposium (IMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2016.7540105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2016.7540105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

提出了一种基于本质可切换铁电BST fbar的BAW滤波器设计方法。基于常用的基于图像参数的滤波器合成方法,导出了一套完整的梯形FBAR滤波器设计方程。首次进行了完整的分析,准确地计算了BAW滤波器的图像阻抗和传播常数。给出了与FBAR和滤波器规格有关的闭式设计方程。作为实验验证,设计、制作并测量了1.5级可切换铁电BST FBAR滤波器。当施加直流偏置时,可切换滤波器处于导通状态,在1.97 GHz时提供5.77 dB的插入损耗和1.22%的分数带宽。当处于关闭状态时,滤波器的隔离度超过22 dB。电路级仿真结果与实测结果吻合良好,验证了所提出的BAW滤波器设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BAW filter design method based on intrinsically switchable ferroelectric BST FBARs
A design method for BAW filters based on intrinsically switchable ferroelectric BST FBARs is presented. A complete set of design equations for ladder-type FBAR filters is derived based on the popular filter synthesis method using image parameters. For the first time, a complete analysis is performed that accurately calculates both the image impedance and propagation constant for BAW filters. Closed-form design equations as a function of FBAR and filter specifications are provided. As an experimental verification, a 1.5-stage switchable ferroelectric BST FBAR filter is designed, fabricated, and measured. When a dc bias is applied, a switchable filter is in its on-state and provides an insertion loss of 5.77 dB with a fractional bandwidth of 1.22% at 1.97 GHz. When in its off-state, the filter exhibits more than 22 dB isolation. Circuit-level simulation results are in very good agreement with the measurement results, validating the proposed BAW filter design method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel 30–90 GHz singly balanced mixer with broadband LO/IF Dual-band filter design with pole-zero distribution in the complex frequency plane Harmonic-WISP: A passive broadband harmonic RFID platform 10 K room temperature LNA for SKA band 1 An F-Band Reflection Amplifier using 28 nm CMOS FD-SOI Technology for Active Reflectarrays and Spatial Power Combining Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1