{"title":"当在化学概念的表达中使用类比时,最大限度地发挥优势并最大限度地减少误解风险:一个设计挑战","authors":"L. Mammino","doi":"10.1515/psr-2022-0318","DOIUrl":null,"url":null,"abstract":"Abstract Analogies are frequently used in chemistry education (and science education in general), above all when introducing a new concept or when a concept is perceived as too abstract by the teacher or by the learners. On the one hand, analogies can offer functioning opportunities for clarifications; on the other hand, they may risk engendering misinterpretations or misconceptions, because the terms of a given analogy may be perceived differently by the teacher and by the student, or may be too farfetched to have a clarifying role. In order to maximize the benefits and minimize the risks, the design of analogies needs to entail careful attention both to the nature of the analogy and to its ‘matching’ to the nature of the concept to which it refers. This involves vigilant analysis of all the details and of their implications, and the parallel design of a viable way to guide the student through the terms of the analogy; such guidance is actually meant to become an explanation component. The paper considers concrete examples from the author’s direct experience with general chemistry and physical chemistry courses, and analyses both the design of the details of the selected analogies and the corresponding guidance pathways. It also discusses related issues like the importance of limiting the resort to analogies to the cases where they can actually have a significant impact on students’ understanding, and the opportunity of replacing them with molecular models whenever feasible, as a model’s nature is closer to the mental images that it is desirable to promote through students’ perceptions. Comparisons of the types of guidance needed for analogies, for general-type visualization, and for visualization through models are also included. The take-home message reiterates the considerations on the nature of analogies as something to be designed, on the teacher’s active role in the design, and on the possibility of including students in the design process, when the concepts and corresponding analogies are suitable for such inclusion.","PeriodicalId":20156,"journal":{"name":"Physical Sciences Reviews","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximizing advantages and minimizing misinterpretation risks when using analogies in the presentation of chemistry concepts: a design challenge\",\"authors\":\"L. Mammino\",\"doi\":\"10.1515/psr-2022-0318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Analogies are frequently used in chemistry education (and science education in general), above all when introducing a new concept or when a concept is perceived as too abstract by the teacher or by the learners. On the one hand, analogies can offer functioning opportunities for clarifications; on the other hand, they may risk engendering misinterpretations or misconceptions, because the terms of a given analogy may be perceived differently by the teacher and by the student, or may be too farfetched to have a clarifying role. In order to maximize the benefits and minimize the risks, the design of analogies needs to entail careful attention both to the nature of the analogy and to its ‘matching’ to the nature of the concept to which it refers. This involves vigilant analysis of all the details and of their implications, and the parallel design of a viable way to guide the student through the terms of the analogy; such guidance is actually meant to become an explanation component. The paper considers concrete examples from the author’s direct experience with general chemistry and physical chemistry courses, and analyses both the design of the details of the selected analogies and the corresponding guidance pathways. It also discusses related issues like the importance of limiting the resort to analogies to the cases where they can actually have a significant impact on students’ understanding, and the opportunity of replacing them with molecular models whenever feasible, as a model’s nature is closer to the mental images that it is desirable to promote through students’ perceptions. Comparisons of the types of guidance needed for analogies, for general-type visualization, and for visualization through models are also included. The take-home message reiterates the considerations on the nature of analogies as something to be designed, on the teacher’s active role in the design, and on the possibility of including students in the design process, when the concepts and corresponding analogies are suitable for such inclusion.\",\"PeriodicalId\":20156,\"journal\":{\"name\":\"Physical Sciences Reviews\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Sciences Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/psr-2022-0318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Sciences Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/psr-2022-0318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Maximizing advantages and minimizing misinterpretation risks when using analogies in the presentation of chemistry concepts: a design challenge
Abstract Analogies are frequently used in chemistry education (and science education in general), above all when introducing a new concept or when a concept is perceived as too abstract by the teacher or by the learners. On the one hand, analogies can offer functioning opportunities for clarifications; on the other hand, they may risk engendering misinterpretations or misconceptions, because the terms of a given analogy may be perceived differently by the teacher and by the student, or may be too farfetched to have a clarifying role. In order to maximize the benefits and minimize the risks, the design of analogies needs to entail careful attention both to the nature of the analogy and to its ‘matching’ to the nature of the concept to which it refers. This involves vigilant analysis of all the details and of their implications, and the parallel design of a viable way to guide the student through the terms of the analogy; such guidance is actually meant to become an explanation component. The paper considers concrete examples from the author’s direct experience with general chemistry and physical chemistry courses, and analyses both the design of the details of the selected analogies and the corresponding guidance pathways. It also discusses related issues like the importance of limiting the resort to analogies to the cases where they can actually have a significant impact on students’ understanding, and the opportunity of replacing them with molecular models whenever feasible, as a model’s nature is closer to the mental images that it is desirable to promote through students’ perceptions. Comparisons of the types of guidance needed for analogies, for general-type visualization, and for visualization through models are also included. The take-home message reiterates the considerations on the nature of analogies as something to be designed, on the teacher’s active role in the design, and on the possibility of including students in the design process, when the concepts and corresponding analogies are suitable for such inclusion.