Kim-Anh Tran, A. Jimborean, Trevor E. Carlson, K. Koukos, Magnus Själander, S. Kaxiras
{"title":"SWOOP:用于非推测性、提前执行、顺序核的软硬件协同设计","authors":"Kim-Anh Tran, A. Jimborean, Trevor E. Carlson, K. Koukos, Magnus Själander, S. Kaxiras","doi":"10.1145/3296979.3192393","DOIUrl":null,"url":null,"abstract":"Increasing demands for energy efficiency constrain emerging hardware. These new hardware trends challenge the established assumptions in code generation and force us to rethink existing software optimization techniques. We propose a cross-layer redesign of the way compilers and the underlying microarchitecture are built and interact, to achieve both performance and high energy efficiency. In this paper, we address one of the main performance bottlenecks — last-level cache misses — through a software-hardware co-design. Our approach is able to hide memory latency and attain increased memory and instruction level parallelism by orchestrating a non-speculative, execute-ahead paradigm in software (SWOOP). While out-of-order (OoO) architectures attempt to hide memory latency by dynamically reordering instructions, they do so through expensive, power-hungry, speculative mechanisms.We aim to shift this complexity into software, and we build upon compilation techniques inherited from VLIW, software pipelining, modulo scheduling, decoupled access-execution, and software prefetching. In contrast to previous approaches we do not rely on either software or hardware speculation that can be detrimental to efficiency. Our SWOOP compiler is enhanced with lightweight architectural support, thus being able to transform applications that include highly complex control-flow and indirect memory accesses.","PeriodicalId":50923,"journal":{"name":"ACM Sigplan Notices","volume":"49 1","pages":"328 - 343"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"SWOOP: software-hardware co-design for non-speculative, execute-ahead, in-order cores\",\"authors\":\"Kim-Anh Tran, A. Jimborean, Trevor E. Carlson, K. Koukos, Magnus Själander, S. Kaxiras\",\"doi\":\"10.1145/3296979.3192393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing demands for energy efficiency constrain emerging hardware. These new hardware trends challenge the established assumptions in code generation and force us to rethink existing software optimization techniques. We propose a cross-layer redesign of the way compilers and the underlying microarchitecture are built and interact, to achieve both performance and high energy efficiency. In this paper, we address one of the main performance bottlenecks — last-level cache misses — through a software-hardware co-design. Our approach is able to hide memory latency and attain increased memory and instruction level parallelism by orchestrating a non-speculative, execute-ahead paradigm in software (SWOOP). While out-of-order (OoO) architectures attempt to hide memory latency by dynamically reordering instructions, they do so through expensive, power-hungry, speculative mechanisms.We aim to shift this complexity into software, and we build upon compilation techniques inherited from VLIW, software pipelining, modulo scheduling, decoupled access-execution, and software prefetching. In contrast to previous approaches we do not rely on either software or hardware speculation that can be detrimental to efficiency. Our SWOOP compiler is enhanced with lightweight architectural support, thus being able to transform applications that include highly complex control-flow and indirect memory accesses.\",\"PeriodicalId\":50923,\"journal\":{\"name\":\"ACM Sigplan Notices\",\"volume\":\"49 1\",\"pages\":\"328 - 343\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Sigplan Notices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3296979.3192393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigplan Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3296979.3192393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
SWOOP: software-hardware co-design for non-speculative, execute-ahead, in-order cores
Increasing demands for energy efficiency constrain emerging hardware. These new hardware trends challenge the established assumptions in code generation and force us to rethink existing software optimization techniques. We propose a cross-layer redesign of the way compilers and the underlying microarchitecture are built and interact, to achieve both performance and high energy efficiency. In this paper, we address one of the main performance bottlenecks — last-level cache misses — through a software-hardware co-design. Our approach is able to hide memory latency and attain increased memory and instruction level parallelism by orchestrating a non-speculative, execute-ahead paradigm in software (SWOOP). While out-of-order (OoO) architectures attempt to hide memory latency by dynamically reordering instructions, they do so through expensive, power-hungry, speculative mechanisms.We aim to shift this complexity into software, and we build upon compilation techniques inherited from VLIW, software pipelining, modulo scheduling, decoupled access-execution, and software prefetching. In contrast to previous approaches we do not rely on either software or hardware speculation that can be detrimental to efficiency. Our SWOOP compiler is enhanced with lightweight architectural support, thus being able to transform applications that include highly complex control-flow and indirect memory accesses.
期刊介绍:
The ACM Special Interest Group on Programming Languages explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users. SIGPLAN sponsors several major annual conferences, including the Symposium on Principles of Programming Languages (POPL), the Symposium on Principles and Practice of Parallel Programming (PPoPP), the Conference on Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), as well as more than a dozen other events of either smaller size or in-cooperation with other SIGs. The monthly "ACM SIGPLAN Notices" publishes proceedings of selected sponsored events and an annual report on SIGPLAN activities. Members receive discounts on conference registrations and free access to ACM SIGPLAN publications in the ACM Digital Library. SIGPLAN recognizes significant research and service contributions of individuals with a variety of awards, supports current members through the Professional Activities Committee, and encourages future programming language enthusiasts with frequent Programming Languages Mentoring Workshops (PLMW).