Thammaporn Thublaor, Padungaut Srihathai, P. Wiman, Angkana Muengjai, S. Chandra-Ambhorn
{"title":"在Ar-CO2-H2O气氛下,含Cu和不含Cu的AISI 430铁素体不锈钢表面Mn-Co尖晶石涂层的氧化行为","authors":"Thammaporn Thublaor, Padungaut Srihathai, P. Wiman, Angkana Muengjai, S. Chandra-Ambhorn","doi":"10.55713/jmmm.v33i2.1582","DOIUrl":null,"url":null,"abstract":"AISI 430 ferritic stainless steel is a promising candidate for utilising as interconnects of solid oxide fuel cells due to its cost effectiveness and durability. Many methods for applying coating on steel substrates have been developed in order to decrease the degradation of steel due to oxidation rate and chromium volatile problems. Manganese-cobalt spinel exhibits high conductivity, thermal expansion compatible with ferritic stainless steels, and forms a barrier to inhibit chromium migration during oxidation. Copper can be added to manganese-cobalt spinel to improve electrical conductivity of the spinel coating. This work investigated oxide scale formation and oxidation rate of Mn-Co and Mn-Co-Cu coated samples in comparison with uncoated steel. The coated samples were prepared on the AISI 430 ferritic stainless steel using the electrodeposition technique. The oxidation rate was tested at 800℃ in Ar-20% CO2-5% H2O for 96 h. The results showed that both Mn-Co and Mn-Co-Cu coated samples could be formed continuous oxide layers. The SEM image showed a chromium oxide layer under the manganese-cobalt coating layer. The oxidation rate of the samples coated with Mn-Co spinel and Mn-Co-Cu spinel was lower than that of the uncoated steel.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"15 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Oxidation behaviour of Mn-Co spinel coating on AISI 430 ferritic stainless steel with and without Cu in Ar-CO2-H2O atmosphere\",\"authors\":\"Thammaporn Thublaor, Padungaut Srihathai, P. Wiman, Angkana Muengjai, S. Chandra-Ambhorn\",\"doi\":\"10.55713/jmmm.v33i2.1582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AISI 430 ferritic stainless steel is a promising candidate for utilising as interconnects of solid oxide fuel cells due to its cost effectiveness and durability. Many methods for applying coating on steel substrates have been developed in order to decrease the degradation of steel due to oxidation rate and chromium volatile problems. Manganese-cobalt spinel exhibits high conductivity, thermal expansion compatible with ferritic stainless steels, and forms a barrier to inhibit chromium migration during oxidation. Copper can be added to manganese-cobalt spinel to improve electrical conductivity of the spinel coating. This work investigated oxide scale formation and oxidation rate of Mn-Co and Mn-Co-Cu coated samples in comparison with uncoated steel. The coated samples were prepared on the AISI 430 ferritic stainless steel using the electrodeposition technique. The oxidation rate was tested at 800℃ in Ar-20% CO2-5% H2O for 96 h. The results showed that both Mn-Co and Mn-Co-Cu coated samples could be formed continuous oxide layers. The SEM image showed a chromium oxide layer under the manganese-cobalt coating layer. The oxidation rate of the samples coated with Mn-Co spinel and Mn-Co-Cu spinel was lower than that of the uncoated steel.\",\"PeriodicalId\":16459,\"journal\":{\"name\":\"Journal of metals, materials and minerals\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of metals, materials and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55713/jmmm.v33i2.1582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v33i2.1582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Oxidation behaviour of Mn-Co spinel coating on AISI 430 ferritic stainless steel with and without Cu in Ar-CO2-H2O atmosphere
AISI 430 ferritic stainless steel is a promising candidate for utilising as interconnects of solid oxide fuel cells due to its cost effectiveness and durability. Many methods for applying coating on steel substrates have been developed in order to decrease the degradation of steel due to oxidation rate and chromium volatile problems. Manganese-cobalt spinel exhibits high conductivity, thermal expansion compatible with ferritic stainless steels, and forms a barrier to inhibit chromium migration during oxidation. Copper can be added to manganese-cobalt spinel to improve electrical conductivity of the spinel coating. This work investigated oxide scale formation and oxidation rate of Mn-Co and Mn-Co-Cu coated samples in comparison with uncoated steel. The coated samples were prepared on the AISI 430 ferritic stainless steel using the electrodeposition technique. The oxidation rate was tested at 800℃ in Ar-20% CO2-5% H2O for 96 h. The results showed that both Mn-Co and Mn-Co-Cu coated samples could be formed continuous oxide layers. The SEM image showed a chromium oxide layer under the manganese-cobalt coating layer. The oxidation rate of the samples coated with Mn-Co spinel and Mn-Co-Cu spinel was lower than that of the uncoated steel.
期刊介绍:
Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.