面向实参数优化的高效协调器引导粒子群优化

P. Agarwalla, S. Mukhopadhyay
{"title":"面向实参数优化的高效协调器引导粒子群优化","authors":"P. Agarwalla, S. Mukhopadhyay","doi":"10.1109/CONFLUENCE.2017.7943134","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) is a stochastic optimization algorithm which usually suffers from local confinement losing its diversity. In this paper, we have proposed an efficient coordinator guided PSO (ECG-PSO), which provides a good diversity to the swarms maintaining good convergence speed and hence improves the fitness and robustness of the technique. We comprehensively evaluate the performance of the ECG-PSO by applying it on real-parameter benchmark optimization functions. Again, the result of comparison shows that ECG-PSO is more efficient compared to other PSO variants for solving complex problems.","PeriodicalId":6651,"journal":{"name":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","volume":"15 1","pages":"118-123"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient coordinator guided particle swarm optimization for real-parameter optimization\",\"authors\":\"P. Agarwalla, S. Mukhopadhyay\",\"doi\":\"10.1109/CONFLUENCE.2017.7943134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle swarm optimization (PSO) is a stochastic optimization algorithm which usually suffers from local confinement losing its diversity. In this paper, we have proposed an efficient coordinator guided PSO (ECG-PSO), which provides a good diversity to the swarms maintaining good convergence speed and hence improves the fitness and robustness of the technique. We comprehensively evaluate the performance of the ECG-PSO by applying it on real-parameter benchmark optimization functions. Again, the result of comparison shows that ECG-PSO is more efficient compared to other PSO variants for solving complex problems.\",\"PeriodicalId\":6651,\"journal\":{\"name\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"volume\":\"15 1\",\"pages\":\"118-123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONFLUENCE.2017.7943134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2017.7943134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

粒子群优化算法(PSO)是一种随机优化算法,常因局部约束而失去多样性。本文提出了一种高效的协调器引导粒子群优化算法(ECG-PSO),该算法在保持良好收敛速度的同时具有良好的种群多样性,从而提高了算法的适应度和鲁棒性。将ECG-PSO应用于实参数基准优化函数,对其性能进行了综合评价。对比结果再次表明,ECG-PSO在解决复杂问题时比其他PSO变体更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient coordinator guided particle swarm optimization for real-parameter optimization
Particle swarm optimization (PSO) is a stochastic optimization algorithm which usually suffers from local confinement losing its diversity. In this paper, we have proposed an efficient coordinator guided PSO (ECG-PSO), which provides a good diversity to the swarms maintaining good convergence speed and hence improves the fitness and robustness of the technique. We comprehensively evaluate the performance of the ECG-PSO by applying it on real-parameter benchmark optimization functions. Again, the result of comparison shows that ECG-PSO is more efficient compared to other PSO variants for solving complex problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrological Modelling to Inform Forest Management: Moving Beyond Equivalent Clearcut Area Enhanced feature mining and classifier models to predict customer churn for an E-retailer Towards the practical design of performance-aware resilient wireless NoC architectures Adaptive virtual MIMO single cluster optimization in a small cell Software effort estimation using machine learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1