{"title":"时间2n/2/poly(n)的子集和","authors":"Xi Chen, Yaonan Jin, Tim Randolph, R. Servedio","doi":"10.48550/arXiv.2301.07134","DOIUrl":null,"url":null,"abstract":"A major goal in the area of exact exponential algorithms is to give an algorithm for the (worst-case) $n$-input Subset Sum problem that runs in time $2^{(1/2 - c)n}$ for some constant $c>0$. In this paper we give a Subset Sum algorithm with worst-case running time $O(2^{n/2} \\cdot n^{-\\gamma})$ for a constant $\\gamma>0.5023$ in standard word RAM or circuit RAM models. To the best of our knowledge, this is the first improvement on the classical ``meet-in-the-middle'' algorithm for worst-case Subset Sum, due to Horowitz and Sahni, which can be implemented in time $O(2^{n/2})$ in these memory models. Our algorithm combines a number of different techniques, including the ``representation method'' introduced by Howgrave-Graham and Joux and subsequent adaptations of the method in Austrin, Kaski, Koivisto, and Nederlof, and Nederlof and Wegrzycki, and ``bit-packing'' techniques used in the work of Baran, Demaine, and Patrascu on subquadratic algorithms for 3SUM.","PeriodicalId":54319,"journal":{"name":"Spin","volume":"3 1","pages":"39:1-39:18"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subset Sum in Time 2n/2/poly(n)\",\"authors\":\"Xi Chen, Yaonan Jin, Tim Randolph, R. Servedio\",\"doi\":\"10.48550/arXiv.2301.07134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major goal in the area of exact exponential algorithms is to give an algorithm for the (worst-case) $n$-input Subset Sum problem that runs in time $2^{(1/2 - c)n}$ for some constant $c>0$. In this paper we give a Subset Sum algorithm with worst-case running time $O(2^{n/2} \\\\cdot n^{-\\\\gamma})$ for a constant $\\\\gamma>0.5023$ in standard word RAM or circuit RAM models. To the best of our knowledge, this is the first improvement on the classical ``meet-in-the-middle'' algorithm for worst-case Subset Sum, due to Horowitz and Sahni, which can be implemented in time $O(2^{n/2})$ in these memory models. Our algorithm combines a number of different techniques, including the ``representation method'' introduced by Howgrave-Graham and Joux and subsequent adaptations of the method in Austrin, Kaski, Koivisto, and Nederlof, and Nederlof and Wegrzycki, and ``bit-packing'' techniques used in the work of Baran, Demaine, and Patrascu on subquadratic algorithms for 3SUM.\",\"PeriodicalId\":54319,\"journal\":{\"name\":\"Spin\",\"volume\":\"3 1\",\"pages\":\"39:1-39:18\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spin\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2301.07134\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spin","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.07134","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
A major goal in the area of exact exponential algorithms is to give an algorithm for the (worst-case) $n$-input Subset Sum problem that runs in time $2^{(1/2 - c)n}$ for some constant $c>0$. In this paper we give a Subset Sum algorithm with worst-case running time $O(2^{n/2} \cdot n^{-\gamma})$ for a constant $\gamma>0.5023$ in standard word RAM or circuit RAM models. To the best of our knowledge, this is the first improvement on the classical ``meet-in-the-middle'' algorithm for worst-case Subset Sum, due to Horowitz and Sahni, which can be implemented in time $O(2^{n/2})$ in these memory models. Our algorithm combines a number of different techniques, including the ``representation method'' introduced by Howgrave-Graham and Joux and subsequent adaptations of the method in Austrin, Kaski, Koivisto, and Nederlof, and Nederlof and Wegrzycki, and ``bit-packing'' techniques used in the work of Baran, Demaine, and Patrascu on subquadratic algorithms for 3SUM.
SpinMaterials Science-Electronic, Optical and Magnetic Materials
CiteScore
2.10
自引率
11.10%
发文量
34
期刊介绍:
Spin electronics encompasses a multidisciplinary research effort involving magnetism, semiconductor electronics, materials science, chemistry and biology. SPIN aims to provide a forum for the presentation of research and review articles of interest to all researchers in the field.
The scope of the journal includes (but is not necessarily limited to) the following topics:
*Materials:
-Metals
-Heusler compounds
-Complex oxides: antiferromagnetic, ferromagnetic
-Dilute magnetic semiconductors
-Dilute magnetic oxides
-High performance and emerging magnetic materials
*Semiconductor electronics
*Nanodevices:
-Fabrication
-Characterization
*Spin injection
*Spin transport
*Spin transfer torque
*Spin torque oscillators
*Electrical control of magnetic properties
*Organic spintronics
*Optical phenomena and optoelectronic spin manipulation
*Applications and devices:
-Novel memories and logic devices
-Lab-on-a-chip
-Others
*Fundamental and interdisciplinary studies:
-Spin in low dimensional system
-Spin in medical sciences
-Spin in other fields
-Computational materials discovery