黄土高原东部气溶胶分布、暖云微物理特性及其关系的飞机测量

Junxia Li, Peiren Li, G. Ren, Liang Yuan, Yiyu Li, Junmei Yang
{"title":"黄土高原东部气溶胶分布、暖云微物理特性及其关系的飞机测量","authors":"Junxia Li, Peiren Li, G. Ren, Liang Yuan, Yiyu Li, Junmei Yang","doi":"10.1080/16000889.2019.1663994","DOIUrl":null,"url":null,"abstract":"Abstract In situ aircraft measurements of aerosols and clouds were performed over the eastern Loess Plateau in Shanxi Province, China. The microphysical properties of both aerosols and warm clouds, including aerosol number concentration (Na), particle effective diameter (ED), number concentration of cloud droplets (Nc), cloud droplet diameter (Dc), and liquid water content (LWC) of clouds, determined through six flight observations performed in May 2013 were obtained and analysed. The mean magnitude of measured Na over the six flights was 103 cm−3, and accumulation mode particles dominated the majority. Most EDs of aerosol particles were less than 1 μm. Large amounts of fine aerosol particles were constrained to the lower layer, with ED smaller than 0.5 μm, and Na decreased with height. The base heights of warm clouds ranged from 1000 to 2800 m. The maximum and average values of the measured Nc ranged from 147 to 311 cm−3 and 51 to 157 cm−3, respectively. The maximum and average Dc ranged from 13.5 to 28.9 and 5.8 to 13.1 μm, respectively. The average LWC of warm clouds was 0.05 g·m−3. Na was negatively correlated with Nc either in the vertical or horizontal direction. Nc was higher with a smaller size of cloud droplets under high aerosol loading conditions. A small number of cloud droplets with larger size were formed under low aerosol loading conditions. At a certain range of LWC, Nc and Dc showed a negative correlation. The increase in LWC was related to an increase in the size of cloud droplets rather than the number of cloud droplets. The cloud droplet size distribution showed that small droplets dominated the total cloud droplet concentration. A bimodal lognormal distribution function can be efficiently used to describe the average spectrum of warm cloud droplets.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Aircraft measurements of aerosol distribution, warm cloud microphysical properties, and their relationship over the Eastern Loess Plateau in China\",\"authors\":\"Junxia Li, Peiren Li, G. Ren, Liang Yuan, Yiyu Li, Junmei Yang\",\"doi\":\"10.1080/16000889.2019.1663994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In situ aircraft measurements of aerosols and clouds were performed over the eastern Loess Plateau in Shanxi Province, China. The microphysical properties of both aerosols and warm clouds, including aerosol number concentration (Na), particle effective diameter (ED), number concentration of cloud droplets (Nc), cloud droplet diameter (Dc), and liquid water content (LWC) of clouds, determined through six flight observations performed in May 2013 were obtained and analysed. The mean magnitude of measured Na over the six flights was 103 cm−3, and accumulation mode particles dominated the majority. Most EDs of aerosol particles were less than 1 μm. Large amounts of fine aerosol particles were constrained to the lower layer, with ED smaller than 0.5 μm, and Na decreased with height. The base heights of warm clouds ranged from 1000 to 2800 m. The maximum and average values of the measured Nc ranged from 147 to 311 cm−3 and 51 to 157 cm−3, respectively. The maximum and average Dc ranged from 13.5 to 28.9 and 5.8 to 13.1 μm, respectively. The average LWC of warm clouds was 0.05 g·m−3. Na was negatively correlated with Nc either in the vertical or horizontal direction. Nc was higher with a smaller size of cloud droplets under high aerosol loading conditions. A small number of cloud droplets with larger size were formed under low aerosol loading conditions. At a certain range of LWC, Nc and Dc showed a negative correlation. The increase in LWC was related to an increase in the size of cloud droplets rather than the number of cloud droplets. The cloud droplet size distribution showed that small droplets dominated the total cloud droplet concentration. A bimodal lognormal distribution function can be efficiently used to describe the average spectrum of warm cloud droplets.\",\"PeriodicalId\":22320,\"journal\":{\"name\":\"Tellus B: Chemical and Physical Meteorology\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tellus B: Chemical and Physical Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/16000889.2019.1663994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus B: Chemical and Physical Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16000889.2019.1663994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在黄土高原东部进行了气溶胶和云的现场飞机测量。通过2013年5月进行的6次飞行观测,获得并分析了气溶胶和暖云的微物理特性,包括气溶胶数浓度(Na)、粒子有效直径(ED)、云滴数浓度(Nc)、云滴直径(Dc)和云的液态水含量(LWC)。6次飞行测得的Na平均量级为103 cm−3,以积累模式粒子为主。气溶胶粒子的EDs大都小于1 μm。大量细小气溶胶粒子被限制在低层,ED小于0.5 μm, Na随高度降低。暖云底高在1000 ~ 2800 m之间。测得的Nc最大值为147 ~ 311 cm−3,平均值为51 ~ 157 cm−3。最大Dc为13.5 ~ 28.9 μm,平均Dc为5.8 ~ 13.1 μm。暖云的平均LWC为0.05 g·m−3。Na与Nc在垂直和水平方向上均呈负相关。在高气溶胶负荷条件下,云滴尺寸越小,Nc越高。在低气溶胶负荷条件下,形成了少量较大尺寸的云滴。在一定的LWC范围内,Nc与Dc呈负相关。LWC的增加与云滴大小的增加有关,而与云滴数量的增加无关。云滴大小分布表明,小液滴在云滴总浓度中占主导地位。双峰对数正态分布函数可以有效地描述暖云液滴的平均光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aircraft measurements of aerosol distribution, warm cloud microphysical properties, and their relationship over the Eastern Loess Plateau in China
Abstract In situ aircraft measurements of aerosols and clouds were performed over the eastern Loess Plateau in Shanxi Province, China. The microphysical properties of both aerosols and warm clouds, including aerosol number concentration (Na), particle effective diameter (ED), number concentration of cloud droplets (Nc), cloud droplet diameter (Dc), and liquid water content (LWC) of clouds, determined through six flight observations performed in May 2013 were obtained and analysed. The mean magnitude of measured Na over the six flights was 103 cm−3, and accumulation mode particles dominated the majority. Most EDs of aerosol particles were less than 1 μm. Large amounts of fine aerosol particles were constrained to the lower layer, with ED smaller than 0.5 μm, and Na decreased with height. The base heights of warm clouds ranged from 1000 to 2800 m. The maximum and average values of the measured Nc ranged from 147 to 311 cm−3 and 51 to 157 cm−3, respectively. The maximum and average Dc ranged from 13.5 to 28.9 and 5.8 to 13.1 μm, respectively. The average LWC of warm clouds was 0.05 g·m−3. Na was negatively correlated with Nc either in the vertical or horizontal direction. Nc was higher with a smaller size of cloud droplets under high aerosol loading conditions. A small number of cloud droplets with larger size were formed under low aerosol loading conditions. At a certain range of LWC, Nc and Dc showed a negative correlation. The increase in LWC was related to an increase in the size of cloud droplets rather than the number of cloud droplets. The cloud droplet size distribution showed that small droplets dominated the total cloud droplet concentration. A bimodal lognormal distribution function can be efficiently used to describe the average spectrum of warm cloud droplets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Approach to Investigating the Relative Importance of Meteorological and Aerosol-Related Parameters in Determining Cloud Microphysical Properties Dimensionless Parameterizations of Air-Sea CO2 Gas Transfer Velocity on Surface Waves Transport of Mineral Dust Into the Arctic in Two Reanalysis Datasets of Atmospheric Composition The Climatic Role of Interactive Leaf Phenology in the Vegetation-Atmosphere System of Radiative-Convective Equilibrium Storm-Resolving Simulations Tropical and Boreal Forest – Atmosphere Interactions: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1