使用遗传算法对仅在感兴趣的序列子集中表示的基序进行推理

Jeffrey A. Thompson, C. Congdon
{"title":"使用遗传算法对仅在感兴趣的序列子集中表示的基序进行推理","authors":"Jeffrey A. Thompson, C. Congdon","doi":"10.1109/BIBMW.2011.6112539","DOIUrl":null,"url":null,"abstract":"In this work, we present GAMID, and extension of GAMI. GAMID is designed to be used for motif inference in noncoding DNA for co-expressed genes or for divergent species. In these cases, we would like to allow the inferred motif to be present in only a subset of the input data. This paper describes the approach and presents preliminary results.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"14 1","pages":"1005-1005"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using genetic algorithms for the inference of motifs that are represented in only a subset of sequences of interest\",\"authors\":\"Jeffrey A. Thompson, C. Congdon\",\"doi\":\"10.1109/BIBMW.2011.6112539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present GAMID, and extension of GAMI. GAMID is designed to be used for motif inference in noncoding DNA for co-expressed genes or for divergent species. In these cases, we would like to allow the inferred motif to be present in only a subset of the input data. This paper describes the approach and presents preliminary results.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"14 1\",\"pages\":\"1005-1005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2011.6112539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2011.6112539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了GAMID,以及GAMI的扩展。GAMID被设计用于共表达基因或不同物种的非编码DNA的基序推断。在这些情况下,我们希望只允许推断的基序出现在输入数据的一个子集中。本文介绍了该方法并给出了初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using genetic algorithms for the inference of motifs that are represented in only a subset of sequences of interest
In this work, we present GAMID, and extension of GAMI. GAMID is designed to be used for motif inference in noncoding DNA for co-expressed genes or for divergent species. In these cases, we would like to allow the inferred motif to be present in only a subset of the input data. This paper describes the approach and presents preliminary results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of protein architectures inferred from phylogenomic analysis of CATH Hierarchical modeling of alternative exon usage associations with survival 3D point cloud sensors for low-cost medical in-situ visualization Bayesian Classifiers for Chemical Toxicity Prediction Normal mode analysis of protein structure dynamics based on residue contact energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1