{"title":"连续体对激子四波混频的贡献","authors":"D. Birkedal, Karim El, Hvam, Jørn Märcher","doi":"10.1109/EQEC.1996.561656","DOIUrl":null,"url":null,"abstract":"Summary form only given. We present an experimental and theoretical investigation of ultrafast transient four-wave mixing (TFWM) of GaAs-AlGaAs quantum wells for simultaneous excitation of exciton and continuum states. Recent TFWM experiments on semiconductors have shown unexpected results when both discrete exciton states and continuum states have been excited simultaneously by ultrafast laser pulses. The decay of the signal, as a function of delay, is significantly faster than the dephasing time of the excitons.","PeriodicalId":21999,"journal":{"name":"Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1996-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Continuum contribution to excitonic four-wave mixing\",\"authors\":\"D. Birkedal, Karim El, Hvam, Jørn Märcher\",\"doi\":\"10.1109/EQEC.1996.561656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. We present an experimental and theoretical investigation of ultrafast transient four-wave mixing (TFWM) of GaAs-AlGaAs quantum wells for simultaneous excitation of exciton and continuum states. Recent TFWM experiments on semiconductors have shown unexpected results when both discrete exciton states and continuum states have been excited simultaneously by ultrafast laser pulses. The decay of the signal, as a function of delay, is significantly faster than the dephasing time of the excitons.\",\"PeriodicalId\":21999,\"journal\":{\"name\":\"Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EQEC.1996.561656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EQEC.1996.561656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continuum contribution to excitonic four-wave mixing
Summary form only given. We present an experimental and theoretical investigation of ultrafast transient four-wave mixing (TFWM) of GaAs-AlGaAs quantum wells for simultaneous excitation of exciton and continuum states. Recent TFWM experiments on semiconductors have shown unexpected results when both discrete exciton states and continuum states have been excited simultaneously by ultrafast laser pulses. The decay of the signal, as a function of delay, is significantly faster than the dephasing time of the excitons.