基于信任的动态队列的错误行为检测

Keno Garlichs, Alexander Willecke, M. Wegner, L. Wolf
{"title":"基于信任的动态队列的错误行为检测","authors":"Keno Garlichs, Alexander Willecke, M. Wegner, L. Wolf","doi":"10.1109/ITSC.2019.8917188","DOIUrl":null,"url":null,"abstract":"Platooning is able to improve fuel efficiency and reduce road congestion. But to maximize the concept’s impact, platoons need to be created dynamically whenever feasible. Therefore, vehicles have to cooperate with unknown and possibly malicious partners, creating new safety hazards. Hence, vehicles need to be able to determine the trustworthiness of their cooperators. This paper proposes TriP, a trust model which rates platoon members by the divergence of their reported to their actual behavior. The proposed model is evaluated against attacks from literature. The evaluation demonstrates that TriP detects all attacks and prevents harm by deploying countermeasures thus mitigating safety hazards.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"15 1","pages":"455-460"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"TriP: Misbehavior Detection for Dynamic Platoons using Trust\",\"authors\":\"Keno Garlichs, Alexander Willecke, M. Wegner, L. Wolf\",\"doi\":\"10.1109/ITSC.2019.8917188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Platooning is able to improve fuel efficiency and reduce road congestion. But to maximize the concept’s impact, platoons need to be created dynamically whenever feasible. Therefore, vehicles have to cooperate with unknown and possibly malicious partners, creating new safety hazards. Hence, vehicles need to be able to determine the trustworthiness of their cooperators. This paper proposes TriP, a trust model which rates platoon members by the divergence of their reported to their actual behavior. The proposed model is evaluated against attacks from literature. The evaluation demonstrates that TriP detects all attacks and prevents harm by deploying countermeasures thus mitigating safety hazards.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"15 1\",\"pages\":\"455-460\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8917188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

车队能够提高燃油效率,减少道路拥堵。但是为了最大化这个概念的影响,排需要在可行的情况下动态创建。因此,车辆必须与未知的、可能怀有恶意的伙伴合作,从而产生新的安全隐患。因此,车辆需要能够确定其合作伙伴的可信度。本文提出了一种基于组成员报告行为与实际行为偏离程度来评价组成员的信任模型TriP。该模型对来自文献的攻击进行了评估。评估表明,TriP可以检测到所有攻击,并通过部署对策来防止伤害,从而减轻安全隐患。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TriP: Misbehavior Detection for Dynamic Platoons using Trust
Platooning is able to improve fuel efficiency and reduce road congestion. But to maximize the concept’s impact, platoons need to be created dynamically whenever feasible. Therefore, vehicles have to cooperate with unknown and possibly malicious partners, creating new safety hazards. Hence, vehicles need to be able to determine the trustworthiness of their cooperators. This paper proposes TriP, a trust model which rates platoon members by the divergence of their reported to their actual behavior. The proposed model is evaluated against attacks from literature. The evaluation demonstrates that TriP detects all attacks and prevents harm by deploying countermeasures thus mitigating safety hazards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reliable Monocular Ego-Motion Estimation System in Rainy Urban Environments Coarse-to-Fine Luminance Estimation for Low-Light Image Enhancement in Maritime Video Surveillance Vehicle Occupancy Detection for HOV/HOT Lanes Enforcement Road Roughness Crowd-Sensing with Smartphone Apps LACI: Low-effort Automatic Calibration of Infrastructure Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1