基于π轨道紧密结合模型的单壁碳纳米管电子性质和带隙:与从头算密度泛函理论的比较研究

IF 0.8 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Nano Research Pub Date : 2022-07-12 DOI:10.4028/p-85523u
R. Takassa, O. Farkad, E. Ibnouelghazi, D. Abouelaoualim
{"title":"基于π轨道紧密结合模型的单壁碳纳米管电子性质和带隙:与从头算密度泛函理论的比较研究","authors":"R. Takassa, O. Farkad, E. Ibnouelghazi, D. Abouelaoualim","doi":"10.4028/p-85523u","DOIUrl":null,"url":null,"abstract":"Semiconducting single-wall carbon nanotubes (SWCNTs) have already emerged as a promising candidate for molecular electronics and photovoltaic applications including solar cells. Any application of semiconducting SWCNTs is primarily related to proper information about its bandgap. In this work, the impact of the chirality indices and diameters of a series of armchair and zigzag SWCNTs on the electronic properties (band gap, electronic band structure and density of states (DOS)) are investigated using semi-empirical π orbitals tight-binding (TB) method. The results indicate that the electronic behaviour of the nanotubes changes according to chirality, the total number of electronic sub-bands gets increased when the chirality increases and Van Hove singularities (VHs) appear in its electronic DOS. We have found that for small diameter tubes (less than 0.8 nm), the calculated band gaps don’t agree with DFT calculations based on ab-initio (LDA and GGA) methods, which shows that the semi-empirical TB method including π orbitals only is not sufficient to give a reasonable description of small nanotubes. All Obtained results are in good agreement with previous studies. Semiconducting SWCNTs used in this study are particularly well-suited for the nanoelectronic devices and optoelectronic applications with their direct bandgap and optical transitions, while metallic SWCNTs are considered to be ideal candidates for variety of future nanoelectronic applications such as nanocircuit interconnects and power transmission cables.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"6 1","pages":"1 - 10"},"PeriodicalIF":0.8000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Electronic Properties and Band Gaps of Single-Wall Carbon Nanotubes Using π Orbitals Tight-Binding Model: A Comparative Study with Ab Initio Density Functional Theory\",\"authors\":\"R. Takassa, O. Farkad, E. Ibnouelghazi, D. Abouelaoualim\",\"doi\":\"10.4028/p-85523u\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semiconducting single-wall carbon nanotubes (SWCNTs) have already emerged as a promising candidate for molecular electronics and photovoltaic applications including solar cells. Any application of semiconducting SWCNTs is primarily related to proper information about its bandgap. In this work, the impact of the chirality indices and diameters of a series of armchair and zigzag SWCNTs on the electronic properties (band gap, electronic band structure and density of states (DOS)) are investigated using semi-empirical π orbitals tight-binding (TB) method. The results indicate that the electronic behaviour of the nanotubes changes according to chirality, the total number of electronic sub-bands gets increased when the chirality increases and Van Hove singularities (VHs) appear in its electronic DOS. We have found that for small diameter tubes (less than 0.8 nm), the calculated band gaps don’t agree with DFT calculations based on ab-initio (LDA and GGA) methods, which shows that the semi-empirical TB method including π orbitals only is not sufficient to give a reasonable description of small nanotubes. All Obtained results are in good agreement with previous studies. Semiconducting SWCNTs used in this study are particularly well-suited for the nanoelectronic devices and optoelectronic applications with their direct bandgap and optical transitions, while metallic SWCNTs are considered to be ideal candidates for variety of future nanoelectronic applications such as nanocircuit interconnects and power transmission cables.\",\"PeriodicalId\":16525,\"journal\":{\"name\":\"Journal of Nano Research\",\"volume\":\"6 1\",\"pages\":\"1 - 10\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4028/p-85523u\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-85523u","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

半导体单壁碳纳米管(SWCNTs)已经成为分子电子学和包括太阳能电池在内的光伏应用的有前途的候选材料。半导体SWCNTs的任何应用主要与有关其带隙的适当信息有关。本文采用半经验π轨道紧密结合(TB)方法研究了一系列扶手椅型和之字形SWCNTs的手性指数和直径对其电子性质(带隙、电子能带结构和态密度)的影响。结果表明,纳米管的电子行为随手性的变化而变化,电子子带的总数随着手性的增加而增加,其电子DOS中出现Van Hove奇点(VHs)。我们发现,对于直径小于0.8 nm的小纳米管,计算的带隙与基于ab-initio (LDA和GGA)方法的DFT计算结果不一致,这表明仅包含π轨道的半经验TB方法不足以合理描述小纳米管。所得结果与以往的研究结果一致。本研究中使用的半导体SWCNTs特别适合于纳米电子器件和光电子应用,具有直接带隙和光跃迁,而金属SWCNTs被认为是未来各种纳米电子应用的理想候选者,如纳米电路互连和电力传输电缆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electronic Properties and Band Gaps of Single-Wall Carbon Nanotubes Using π Orbitals Tight-Binding Model: A Comparative Study with Ab Initio Density Functional Theory
Semiconducting single-wall carbon nanotubes (SWCNTs) have already emerged as a promising candidate for molecular electronics and photovoltaic applications including solar cells. Any application of semiconducting SWCNTs is primarily related to proper information about its bandgap. In this work, the impact of the chirality indices and diameters of a series of armchair and zigzag SWCNTs on the electronic properties (band gap, electronic band structure and density of states (DOS)) are investigated using semi-empirical π orbitals tight-binding (TB) method. The results indicate that the electronic behaviour of the nanotubes changes according to chirality, the total number of electronic sub-bands gets increased when the chirality increases and Van Hove singularities (VHs) appear in its electronic DOS. We have found that for small diameter tubes (less than 0.8 nm), the calculated band gaps don’t agree with DFT calculations based on ab-initio (LDA and GGA) methods, which shows that the semi-empirical TB method including π orbitals only is not sufficient to give a reasonable description of small nanotubes. All Obtained results are in good agreement with previous studies. Semiconducting SWCNTs used in this study are particularly well-suited for the nanoelectronic devices and optoelectronic applications with their direct bandgap and optical transitions, while metallic SWCNTs are considered to be ideal candidates for variety of future nanoelectronic applications such as nanocircuit interconnects and power transmission cables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nano Research
Journal of Nano Research 工程技术-材料科学:综合
CiteScore
2.40
自引率
5.90%
发文量
55
审稿时长
4 months
期刊介绍: "Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results. "Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited. Authors retain the right to publish an extended and significantly updated version in another periodical.
期刊最新文献
Mean Field Study of a Cylindrical Ferrimagnetic Nanotube with Different Anisotropies The Influence of Reaction Medium pH on the Structure, Optical, and Mechanical Properties of Nanosized Cu-Fe Ferrite Synthesized by the Sol-Gel Autocombustion Method Fabrication and Characterization of Eco-Friendly Polystyrene Based Zinc Oxide-Graphite (PS/ZnO-G) Hierarchical CoP@NiMn-P Nanocomposites Grown on Carbon Cloth for High-Performance Supercapacitor Electrodes High-Transconductance and Low-Leakage Current Single Aluminum Nitride Nanowire Field Effect Transistor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1