R. Takassa, O. Farkad, E. Ibnouelghazi, D. Abouelaoualim
{"title":"基于π轨道紧密结合模型的单壁碳纳米管电子性质和带隙:与从头算密度泛函理论的比较研究","authors":"R. Takassa, O. Farkad, E. Ibnouelghazi, D. Abouelaoualim","doi":"10.4028/p-85523u","DOIUrl":null,"url":null,"abstract":"Semiconducting single-wall carbon nanotubes (SWCNTs) have already emerged as a promising candidate for molecular electronics and photovoltaic applications including solar cells. Any application of semiconducting SWCNTs is primarily related to proper information about its bandgap. In this work, the impact of the chirality indices and diameters of a series of armchair and zigzag SWCNTs on the electronic properties (band gap, electronic band structure and density of states (DOS)) are investigated using semi-empirical π orbitals tight-binding (TB) method. The results indicate that the electronic behaviour of the nanotubes changes according to chirality, the total number of electronic sub-bands gets increased when the chirality increases and Van Hove singularities (VHs) appear in its electronic DOS. We have found that for small diameter tubes (less than 0.8 nm), the calculated band gaps don’t agree with DFT calculations based on ab-initio (LDA and GGA) methods, which shows that the semi-empirical TB method including π orbitals only is not sufficient to give a reasonable description of small nanotubes. All Obtained results are in good agreement with previous studies. Semiconducting SWCNTs used in this study are particularly well-suited for the nanoelectronic devices and optoelectronic applications with their direct bandgap and optical transitions, while metallic SWCNTs are considered to be ideal candidates for variety of future nanoelectronic applications such as nanocircuit interconnects and power transmission cables.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"6 1","pages":"1 - 10"},"PeriodicalIF":0.8000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Electronic Properties and Band Gaps of Single-Wall Carbon Nanotubes Using π Orbitals Tight-Binding Model: A Comparative Study with Ab Initio Density Functional Theory\",\"authors\":\"R. Takassa, O. Farkad, E. Ibnouelghazi, D. Abouelaoualim\",\"doi\":\"10.4028/p-85523u\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semiconducting single-wall carbon nanotubes (SWCNTs) have already emerged as a promising candidate for molecular electronics and photovoltaic applications including solar cells. Any application of semiconducting SWCNTs is primarily related to proper information about its bandgap. In this work, the impact of the chirality indices and diameters of a series of armchair and zigzag SWCNTs on the electronic properties (band gap, electronic band structure and density of states (DOS)) are investigated using semi-empirical π orbitals tight-binding (TB) method. The results indicate that the electronic behaviour of the nanotubes changes according to chirality, the total number of electronic sub-bands gets increased when the chirality increases and Van Hove singularities (VHs) appear in its electronic DOS. We have found that for small diameter tubes (less than 0.8 nm), the calculated band gaps don’t agree with DFT calculations based on ab-initio (LDA and GGA) methods, which shows that the semi-empirical TB method including π orbitals only is not sufficient to give a reasonable description of small nanotubes. All Obtained results are in good agreement with previous studies. Semiconducting SWCNTs used in this study are particularly well-suited for the nanoelectronic devices and optoelectronic applications with their direct bandgap and optical transitions, while metallic SWCNTs are considered to be ideal candidates for variety of future nanoelectronic applications such as nanocircuit interconnects and power transmission cables.\",\"PeriodicalId\":16525,\"journal\":{\"name\":\"Journal of Nano Research\",\"volume\":\"6 1\",\"pages\":\"1 - 10\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4028/p-85523u\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-85523u","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Electronic Properties and Band Gaps of Single-Wall Carbon Nanotubes Using π Orbitals Tight-Binding Model: A Comparative Study with Ab Initio Density Functional Theory
Semiconducting single-wall carbon nanotubes (SWCNTs) have already emerged as a promising candidate for molecular electronics and photovoltaic applications including solar cells. Any application of semiconducting SWCNTs is primarily related to proper information about its bandgap. In this work, the impact of the chirality indices and diameters of a series of armchair and zigzag SWCNTs on the electronic properties (band gap, electronic band structure and density of states (DOS)) are investigated using semi-empirical π orbitals tight-binding (TB) method. The results indicate that the electronic behaviour of the nanotubes changes according to chirality, the total number of electronic sub-bands gets increased when the chirality increases and Van Hove singularities (VHs) appear in its electronic DOS. We have found that for small diameter tubes (less than 0.8 nm), the calculated band gaps don’t agree with DFT calculations based on ab-initio (LDA and GGA) methods, which shows that the semi-empirical TB method including π orbitals only is not sufficient to give a reasonable description of small nanotubes. All Obtained results are in good agreement with previous studies. Semiconducting SWCNTs used in this study are particularly well-suited for the nanoelectronic devices and optoelectronic applications with their direct bandgap and optical transitions, while metallic SWCNTs are considered to be ideal candidates for variety of future nanoelectronic applications such as nanocircuit interconnects and power transmission cables.
期刊介绍:
"Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results.
"Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited.
Authors retain the right to publish an extended and significantly updated version in another periodical.