{"title":"基于会话推荐的自适应上下文嵌入超图卷积网络","authors":"Chenyang Zhao, Heling Cao, Pengtao Lv, Yonghe Chu, Feng Wang, Tianli Liao","doi":"10.5755/j01.itc.52.1.32138","DOIUrl":null,"url":null,"abstract":"The graph neural network (GNN) based approaches have attracted more and more attention in session-based recommendation tasks. However, most of the existing methods do not fully take advantage of context information in session when capturing user’s interest, and the research on context adaptation is even less. Furthermore, hypergraph has potential to express complex relations among items, but it has remained unexplored. Therefore, this paper proposes an adaptive context-embedded hypergraph convolutional network (AC-HCN) for session-based recommendation. At first, the data of sessions is constructed as session hypergraph. Then, the representation of each item in session hypergraph is learned using an adaptive context-embedded hypergraph convolution. In the convolution, different types of context information from both current item itself and the item’s neighborhoods are adaptively integrated into the representation updating of current item. Meanwhile, an adaptive transformation function is employed to effectively eliminate the effects of irrelevant items. Then, the learned item representations are combined with time interval embeddings and reversed position embeddings to fully reflect time interval information and sequential information between items in session. Finally, based on learned item representations in session, a soft attention mechanism is used to obtain user’s interest, and then a recommendation list is given. Extensive experiments on the real-world datasets show that the proposed model has significantly improvement compared with the state-of-arts methods.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"15 1","pages":"111-127"},"PeriodicalIF":2.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Context-Embedded Hypergraph Convolutional Network for Session-based Recommendation\",\"authors\":\"Chenyang Zhao, Heling Cao, Pengtao Lv, Yonghe Chu, Feng Wang, Tianli Liao\",\"doi\":\"10.5755/j01.itc.52.1.32138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The graph neural network (GNN) based approaches have attracted more and more attention in session-based recommendation tasks. However, most of the existing methods do not fully take advantage of context information in session when capturing user’s interest, and the research on context adaptation is even less. Furthermore, hypergraph has potential to express complex relations among items, but it has remained unexplored. Therefore, this paper proposes an adaptive context-embedded hypergraph convolutional network (AC-HCN) for session-based recommendation. At first, the data of sessions is constructed as session hypergraph. Then, the representation of each item in session hypergraph is learned using an adaptive context-embedded hypergraph convolution. In the convolution, different types of context information from both current item itself and the item’s neighborhoods are adaptively integrated into the representation updating of current item. Meanwhile, an adaptive transformation function is employed to effectively eliminate the effects of irrelevant items. Then, the learned item representations are combined with time interval embeddings and reversed position embeddings to fully reflect time interval information and sequential information between items in session. Finally, based on learned item representations in session, a soft attention mechanism is used to obtain user’s interest, and then a recommendation list is given. Extensive experiments on the real-world datasets show that the proposed model has significantly improvement compared with the state-of-arts methods.\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"15 1\",\"pages\":\"111-127\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.52.1.32138\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.1.32138","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Adaptive Context-Embedded Hypergraph Convolutional Network for Session-based Recommendation
The graph neural network (GNN) based approaches have attracted more and more attention in session-based recommendation tasks. However, most of the existing methods do not fully take advantage of context information in session when capturing user’s interest, and the research on context adaptation is even less. Furthermore, hypergraph has potential to express complex relations among items, but it has remained unexplored. Therefore, this paper proposes an adaptive context-embedded hypergraph convolutional network (AC-HCN) for session-based recommendation. At first, the data of sessions is constructed as session hypergraph. Then, the representation of each item in session hypergraph is learned using an adaptive context-embedded hypergraph convolution. In the convolution, different types of context information from both current item itself and the item’s neighborhoods are adaptively integrated into the representation updating of current item. Meanwhile, an adaptive transformation function is employed to effectively eliminate the effects of irrelevant items. Then, the learned item representations are combined with time interval embeddings and reversed position embeddings to fully reflect time interval information and sequential information between items in session. Finally, based on learned item representations in session, a soft attention mechanism is used to obtain user’s interest, and then a recommendation list is given. Extensive experiments on the real-world datasets show that the proposed model has significantly improvement compared with the state-of-arts methods.
期刊介绍:
Periodical journal covers a wide field of computer science and control systems related problems including:
-Software and hardware engineering;
-Management systems engineering;
-Information systems and databases;
-Embedded systems;
-Physical systems modelling and application;
-Computer networks and cloud computing;
-Data visualization;
-Human-computer interface;
-Computer graphics, visual analytics, and multimedia systems.