{"title":"粉末冶金制备自润滑铝基杂化金属基复合材料的摩擦力学特性","authors":"N. Zamani, A. A. Iqbal, D. M. Nuruzzaman","doi":"10.2139/ssrn.3673573","DOIUrl":null,"url":null,"abstract":"In this research, the tribo-mechanical behaviour of self-lubricating aluminium (Al) based hybrid metal matrix composites (MMCs) reinforced with graphite (Gr) and Al2O3 particles (Al+Gr+Al2O3) were studied aiming to obtain the superior wear and mechanical properties in a single material. Three different compositions of hybrid MMCs were fabricated by powder metallurgy technique, their wear and mechanical properties were tested and compared with pure monolithic Al and Al+Gr composite. The microstructure of the samples was examined and various mechanical properties such as microhardness, tensile and flexural strength were evaluated. The wear behaviour of the hybrid MMCs was investigated by using a pin-on-disc tribometer. The results revealed that the combined effect of Al2O3 and graphite reinforcement particles significantly improved the wear and mechanical properties of hybrid MMCs. All the mechanical properties were increased and the wear rate and coefficient of friction were decreased remarkably. Besides, the reinforcement composition of 3%Gr and 10%Al2O3 (Al+3%Gr+10%Al2O3) forms a smooth tribosurface thus increases the wear resistant properties at the highest level than that of other compositions of the hybrid MMCs.","PeriodicalId":18255,"journal":{"name":"MatSciRN: Process & Device Modeling (Topic)","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tribo-Mechanical Characterization of Self-Lubricating Aluminium Based Hybrid Metal Matrix Composite Fabricated Via Powder Metallurgy\",\"authors\":\"N. Zamani, A. A. Iqbal, D. M. Nuruzzaman\",\"doi\":\"10.2139/ssrn.3673573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the tribo-mechanical behaviour of self-lubricating aluminium (Al) based hybrid metal matrix composites (MMCs) reinforced with graphite (Gr) and Al2O3 particles (Al+Gr+Al2O3) were studied aiming to obtain the superior wear and mechanical properties in a single material. Three different compositions of hybrid MMCs were fabricated by powder metallurgy technique, their wear and mechanical properties were tested and compared with pure monolithic Al and Al+Gr composite. The microstructure of the samples was examined and various mechanical properties such as microhardness, tensile and flexural strength were evaluated. The wear behaviour of the hybrid MMCs was investigated by using a pin-on-disc tribometer. The results revealed that the combined effect of Al2O3 and graphite reinforcement particles significantly improved the wear and mechanical properties of hybrid MMCs. All the mechanical properties were increased and the wear rate and coefficient of friction were decreased remarkably. Besides, the reinforcement composition of 3%Gr and 10%Al2O3 (Al+3%Gr+10%Al2O3) forms a smooth tribosurface thus increases the wear resistant properties at the highest level than that of other compositions of the hybrid MMCs.\",\"PeriodicalId\":18255,\"journal\":{\"name\":\"MatSciRN: Process & Device Modeling (Topic)\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MatSciRN: Process & Device Modeling (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3673573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Process & Device Modeling (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3673573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tribo-Mechanical Characterization of Self-Lubricating Aluminium Based Hybrid Metal Matrix Composite Fabricated Via Powder Metallurgy
In this research, the tribo-mechanical behaviour of self-lubricating aluminium (Al) based hybrid metal matrix composites (MMCs) reinforced with graphite (Gr) and Al2O3 particles (Al+Gr+Al2O3) were studied aiming to obtain the superior wear and mechanical properties in a single material. Three different compositions of hybrid MMCs were fabricated by powder metallurgy technique, their wear and mechanical properties were tested and compared with pure monolithic Al and Al+Gr composite. The microstructure of the samples was examined and various mechanical properties such as microhardness, tensile and flexural strength were evaluated. The wear behaviour of the hybrid MMCs was investigated by using a pin-on-disc tribometer. The results revealed that the combined effect of Al2O3 and graphite reinforcement particles significantly improved the wear and mechanical properties of hybrid MMCs. All the mechanical properties were increased and the wear rate and coefficient of friction were decreased remarkably. Besides, the reinforcement composition of 3%Gr and 10%Al2O3 (Al+3%Gr+10%Al2O3) forms a smooth tribosurface thus increases the wear resistant properties at the highest level than that of other compositions of the hybrid MMCs.