用环境扫描透射电镜观察纳米颗粒中Cu和Cu2O界面转变

{"title":"用环境扫描透射电镜观察纳米颗粒中Cu和Cu2O界面转变","authors":"","doi":"10.1021/jacs.6b08842.s001","DOIUrl":null,"url":null,"abstract":"Understanding the oxidation and reduction mechanisms of catalytically active transition metal nanoparticles is important to improve their application in a variety of chemical processes. In nanocatalysis the nanoparticles can undergo oxidation or reduction in situ, and thus the redox species are not what are observed before and after reactions. We have used the novel environmental scanning transmission electron microscope (ESTEM) with 0.1 nm resolution in systematic studies of complex dynamic oxidation and reduction mechanisms of copper nanoparticles. The oxidation of copper has previously been reported to be dependent on its crystallography and its interaction with the substrate. By following the dynamic oxidation process in situ, in real time, with high-angle annular dark-field imaging in the ESTEM, we use conditions ideal to track the oxidation front as it progresses across a copper nanoparticle by following the changes in the atomic number (z) contrast with time. The oxidation occurs via the nucleation of the oxide phase (Cu2O) from one area of the nanoparticle which then progresses unidirectionally across the particle, with the Cu-to-Cu2O interface having a relationship of Cu{111} parallel to Cu2O{111}. The oxidation kinetics are related to the temperature and oxygen pressure. When the process is reversed in hydrogen, the reduction process is observed to be similar to the oxidation, with the same crystallographic relationship between the two phases. The dynamic observations provide unique insights into redox mechanisms which are important to understanding and controlling the oxidation and reduction of copper-based nanoparticles.","PeriodicalId":8439,"journal":{"name":"arXiv: Chemical Physics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualizing the Cu and Cu2O Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy\",\"authors\":\"\",\"doi\":\"10.1021/jacs.6b08842.s001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the oxidation and reduction mechanisms of catalytically active transition metal nanoparticles is important to improve their application in a variety of chemical processes. In nanocatalysis the nanoparticles can undergo oxidation or reduction in situ, and thus the redox species are not what are observed before and after reactions. We have used the novel environmental scanning transmission electron microscope (ESTEM) with 0.1 nm resolution in systematic studies of complex dynamic oxidation and reduction mechanisms of copper nanoparticles. The oxidation of copper has previously been reported to be dependent on its crystallography and its interaction with the substrate. By following the dynamic oxidation process in situ, in real time, with high-angle annular dark-field imaging in the ESTEM, we use conditions ideal to track the oxidation front as it progresses across a copper nanoparticle by following the changes in the atomic number (z) contrast with time. The oxidation occurs via the nucleation of the oxide phase (Cu2O) from one area of the nanoparticle which then progresses unidirectionally across the particle, with the Cu-to-Cu2O interface having a relationship of Cu{111} parallel to Cu2O{111}. The oxidation kinetics are related to the temperature and oxygen pressure. When the process is reversed in hydrogen, the reduction process is observed to be similar to the oxidation, with the same crystallographic relationship between the two phases. The dynamic observations provide unique insights into redox mechanisms which are important to understanding and controlling the oxidation and reduction of copper-based nanoparticles.\",\"PeriodicalId\":8439,\"journal\":{\"name\":\"arXiv: Chemical Physics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.6b08842.s001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacs.6b08842.s001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解具有催化活性的过渡金属纳米颗粒的氧化还原机理对提高其在各种化学过程中的应用具有重要意义。在纳米催化中,纳米颗粒可以在原位进行氧化或还原,因此氧化还原物质不是反应前后观察到的。我们利用0.1 nm分辨率的新型环境扫描透射电子显微镜(ESTEM)系统研究了铜纳米颗粒复杂的动态氧化和还原机制。铜的氧化以前被报道依赖于它的晶体学和它与衬底的相互作用。通过在ESTEM中使用高角度环形暗场成像,实时跟踪动态氧化过程,我们使用理想的条件,通过跟踪原子序数(z)随时间的变化,跟踪氧化锋在铜纳米颗粒中的进展。氧化通过氧化相(Cu2O)从纳米颗粒的一个区域的成核发生,然后在颗粒中单向发展,Cu- Cu2O界面具有平行于Cu2O{111}的关系。氧化动力学与温度和氧压有关。当这个过程在氢中反转时,观察到还原过程与氧化过程相似,两相之间具有相同的晶体学关系。动态观察为氧化还原机制提供了独特的见解,这对于理解和控制铜基纳米颗粒的氧化和还原非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualizing the Cu and Cu2O Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy
Understanding the oxidation and reduction mechanisms of catalytically active transition metal nanoparticles is important to improve their application in a variety of chemical processes. In nanocatalysis the nanoparticles can undergo oxidation or reduction in situ, and thus the redox species are not what are observed before and after reactions. We have used the novel environmental scanning transmission electron microscope (ESTEM) with 0.1 nm resolution in systematic studies of complex dynamic oxidation and reduction mechanisms of copper nanoparticles. The oxidation of copper has previously been reported to be dependent on its crystallography and its interaction with the substrate. By following the dynamic oxidation process in situ, in real time, with high-angle annular dark-field imaging in the ESTEM, we use conditions ideal to track the oxidation front as it progresses across a copper nanoparticle by following the changes in the atomic number (z) contrast with time. The oxidation occurs via the nucleation of the oxide phase (Cu2O) from one area of the nanoparticle which then progresses unidirectionally across the particle, with the Cu-to-Cu2O interface having a relationship of Cu{111} parallel to Cu2O{111}. The oxidation kinetics are related to the temperature and oxygen pressure. When the process is reversed in hydrogen, the reduction process is observed to be similar to the oxidation, with the same crystallographic relationship between the two phases. The dynamic observations provide unique insights into redox mechanisms which are important to understanding and controlling the oxidation and reduction of copper-based nanoparticles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flexible model of water based on the dielectric and electromagnetic spectrum properties : TIP4P/$\epsilon$ Flex. Characterization of a Modular Flow Cell System for Electrocatalytic Experiments and Comparison to a Commercial RRDE System Predicting Gas-Particle Partitioning Coefficients of Atmospheric Molecules with Machine Learning Electron-stimulated desorption from molecular ices in the 0.15–2 keV regime (15‐crown‐5)BiI 3 as a Building Block for Halogen Bonded Supramolecular Aggregates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1