系外行星的测量参数对推断的内部结构的影响。

Jon Fernandez Otegi, C. Dorn, R. Helled, F. Bouchy, J. Haldemann, Y. Alibert
{"title":"系外行星的测量参数对推断的内部结构的影响。","authors":"Jon Fernandez Otegi, C. Dorn, R. Helled, F. Bouchy, J. Haldemann, Y. Alibert","doi":"10.5194/epsc2020-721","DOIUrl":null,"url":null,"abstract":"Exoplanet characterization is one of the main foci of current exoplanetary science. For super-Earths and sub-Neptunes, we mostly rely on mass and radius measurements, which allow to derive the body's mean density and give a rough estimate of the planet's bulk composition. However, the determination of planetary interiors is a very challenging task. In addition to the uncertainty in the observed fundamental parameters, theoretical models are limited due to the degeneracy in determining the planetary composition. We aim to study several aspects that affect internal characterization of super-Earths and sub-Neptunes: observational uncertainties, location on the M-R diagram, impact of additional constraints as bulk abundances or irradiation, and model assumptions. We use a full probabilistic Bayesian inference analysis that accounts for observational and model uncertainties. We employ a Nested Sampling scheme to efficiently produce the posterior probability distributions for all the planetary structural parameter of interest. We include a structural model based on self-consistent thermodynamics of core, mantle, high-pressure ice, liquid water, and H-He envelope. Regarding the effect of mass and radius uncertainties on the determination of the internal structure, we find three different regimes: below the Earth-like composition line and above the pure-water composition line smaller observational uncertainties lead to better determination of the core and atmosphere mass respectively, and between them structure characterization only weakly depends on the observational uncertainties. We show that small variations in the temperature or entropy profiles lead to radius variations that are comparable to the observational uncertainty, suggesting that uncertainties linked to model assumptions can become more relevant to determine the internal structure than observational uncertainties.","PeriodicalId":8428,"journal":{"name":"arXiv: Earth and Planetary Astrophysics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The impact of exoplanets' measured parameters on the inferred internal structure.\",\"authors\":\"Jon Fernandez Otegi, C. Dorn, R. Helled, F. Bouchy, J. Haldemann, Y. Alibert\",\"doi\":\"10.5194/epsc2020-721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exoplanet characterization is one of the main foci of current exoplanetary science. For super-Earths and sub-Neptunes, we mostly rely on mass and radius measurements, which allow to derive the body's mean density and give a rough estimate of the planet's bulk composition. However, the determination of planetary interiors is a very challenging task. In addition to the uncertainty in the observed fundamental parameters, theoretical models are limited due to the degeneracy in determining the planetary composition. We aim to study several aspects that affect internal characterization of super-Earths and sub-Neptunes: observational uncertainties, location on the M-R diagram, impact of additional constraints as bulk abundances or irradiation, and model assumptions. We use a full probabilistic Bayesian inference analysis that accounts for observational and model uncertainties. We employ a Nested Sampling scheme to efficiently produce the posterior probability distributions for all the planetary structural parameter of interest. We include a structural model based on self-consistent thermodynamics of core, mantle, high-pressure ice, liquid water, and H-He envelope. Regarding the effect of mass and radius uncertainties on the determination of the internal structure, we find three different regimes: below the Earth-like composition line and above the pure-water composition line smaller observational uncertainties lead to better determination of the core and atmosphere mass respectively, and between them structure characterization only weakly depends on the observational uncertainties. We show that small variations in the temperature or entropy profiles lead to radius variations that are comparable to the observational uncertainty, suggesting that uncertainties linked to model assumptions can become more relevant to determine the internal structure than observational uncertainties.\",\"PeriodicalId\":8428,\"journal\":{\"name\":\"arXiv: Earth and Planetary Astrophysics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Earth and Planetary Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/epsc2020-721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/epsc2020-721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

系外行星的表征是当前系外行星科学的主要焦点之一。对于超级地球和亚海王星,我们主要依靠质量和半径测量,这可以推导出天体的平均密度,并对行星的总体组成进行粗略估计。然而,确定行星内部是一项非常具有挑战性的任务。除了观测到的基本参数的不确定性外,由于在确定行星组成时的简并性,理论模型也受到了限制。我们的目标是研究影响超级地球和亚海王星内部特征的几个方面:观测不确定性,在M-R图上的位置,诸如体积丰度或辐射等附加约束的影响,以及模型假设。我们使用全概率贝叶斯推理分析,考虑到观测和模型的不确定性。我们采用嵌套采样方案,有效地产生所有感兴趣的行星结构参数的后验概率分布。我们建立了一个基于地核、地幔、高压冰、液态水和H-He包络层自洽热力学的结构模型。对于质量和半径不确定度对内部结构确定的影响,我们发现了三种不同的情况:在类地成分线以下和在纯水成分线以上,较小的观测不确定度分别可以更好地确定核心和大气质量,两者之间的结构表征对观测不确定度的依赖性较弱。我们表明,温度或熵分布的微小变化导致的半径变化与观测不确定性相当,这表明与模式假设相关的不确定性可能比观测不确定性更能确定内部结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The impact of exoplanets' measured parameters on the inferred internal structure.
Exoplanet characterization is one of the main foci of current exoplanetary science. For super-Earths and sub-Neptunes, we mostly rely on mass and radius measurements, which allow to derive the body's mean density and give a rough estimate of the planet's bulk composition. However, the determination of planetary interiors is a very challenging task. In addition to the uncertainty in the observed fundamental parameters, theoretical models are limited due to the degeneracy in determining the planetary composition. We aim to study several aspects that affect internal characterization of super-Earths and sub-Neptunes: observational uncertainties, location on the M-R diagram, impact of additional constraints as bulk abundances or irradiation, and model assumptions. We use a full probabilistic Bayesian inference analysis that accounts for observational and model uncertainties. We employ a Nested Sampling scheme to efficiently produce the posterior probability distributions for all the planetary structural parameter of interest. We include a structural model based on self-consistent thermodynamics of core, mantle, high-pressure ice, liquid water, and H-He envelope. Regarding the effect of mass and radius uncertainties on the determination of the internal structure, we find three different regimes: below the Earth-like composition line and above the pure-water composition line smaller observational uncertainties lead to better determination of the core and atmosphere mass respectively, and between them structure characterization only weakly depends on the observational uncertainties. We show that small variations in the temperature or entropy profiles lead to radius variations that are comparable to the observational uncertainty, suggesting that uncertainties linked to model assumptions can become more relevant to determine the internal structure than observational uncertainties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting The Averaged Problem in The Case of Mean-Motion Resonances of The Restricted Three-Body Problem. Global Rigorous Treatment and Application To The Co-Orbital Motion. Automatic planetary defense Deflecting NEOs by missiles shot from L1 and L3 (Earth-Moon). Modeling the nonaxisymmetric structure in the HD 163296 disk with planet-disk interaction Origin and dynamical evolution of the asteroid belt Revised planet brightness temperatures using the Planck/LFI 2018 data release
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1