{"title":"多目标优化洗牌蛙跃双聚类","authors":"Junwan Liu, Xiaohua Hu, Zhoujun Li, Yiming Chen","doi":"10.1109/BIBMW.2011.6112368","DOIUrl":null,"url":null,"abstract":"Biclustering of DNA microarray data that can mine significant patterns to help in understanding gene regulation and interactions. This is a classical multi-objective optimization problem (MOP). Recently, many researchers have developed stochastic search methods that mimic the efficient behavior of species such as ants, bees, birds and frogs, as a means to seek faster and more robust solutions to complex optimization problems. The particle swarm optimization(PSO) is a heuristics-based optimization approach simulating the movements of a bird flock finding food. The shuffled frog leaping algorithm (SFLA) is a population-based cooperative search metaphor combining the benefits of the local search of PSO and the global shuffled of information of the complex evolution technique. This paper introduces SFL algorithm to solve biclustering of microarray data, and proposes a novel multi-objective shuffled frog leaping biclustering(MOSFLB) algorithm to mine coherent patterns from microarray data. Experimental results on two real datasets show that our approach can effectively find significant biclusters of high quality.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"46 1","pages":"151-156"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multiobjective optizition shuffled frog-leaping biclustering\",\"authors\":\"Junwan Liu, Xiaohua Hu, Zhoujun Li, Yiming Chen\",\"doi\":\"10.1109/BIBMW.2011.6112368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biclustering of DNA microarray data that can mine significant patterns to help in understanding gene regulation and interactions. This is a classical multi-objective optimization problem (MOP). Recently, many researchers have developed stochastic search methods that mimic the efficient behavior of species such as ants, bees, birds and frogs, as a means to seek faster and more robust solutions to complex optimization problems. The particle swarm optimization(PSO) is a heuristics-based optimization approach simulating the movements of a bird flock finding food. The shuffled frog leaping algorithm (SFLA) is a population-based cooperative search metaphor combining the benefits of the local search of PSO and the global shuffled of information of the complex evolution technique. This paper introduces SFL algorithm to solve biclustering of microarray data, and proposes a novel multi-objective shuffled frog leaping biclustering(MOSFLB) algorithm to mine coherent patterns from microarray data. Experimental results on two real datasets show that our approach can effectively find significant biclusters of high quality.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"46 1\",\"pages\":\"151-156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2011.6112368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2011.6112368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biclustering of DNA microarray data that can mine significant patterns to help in understanding gene regulation and interactions. This is a classical multi-objective optimization problem (MOP). Recently, many researchers have developed stochastic search methods that mimic the efficient behavior of species such as ants, bees, birds and frogs, as a means to seek faster and more robust solutions to complex optimization problems. The particle swarm optimization(PSO) is a heuristics-based optimization approach simulating the movements of a bird flock finding food. The shuffled frog leaping algorithm (SFLA) is a population-based cooperative search metaphor combining the benefits of the local search of PSO and the global shuffled of information of the complex evolution technique. This paper introduces SFL algorithm to solve biclustering of microarray data, and proposes a novel multi-objective shuffled frog leaping biclustering(MOSFLB) algorithm to mine coherent patterns from microarray data. Experimental results on two real datasets show that our approach can effectively find significant biclusters of high quality.