不确定扰动系统的鲁棒控制有限时间镇定

IF 1.6 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS International Journal of Applied Mathematics and Computer Science Pub Date : 2023-03-01 DOI:10.34768/amcs-2023-0006
P. Ordaz, H. Alazki, B. Sánchez, M. Ordaz-Oliver
{"title":"不确定扰动系统的鲁棒控制有限时间镇定","authors":"P. Ordaz, H. Alazki, B. Sánchez, M. Ordaz-Oliver","doi":"10.34768/amcs-2023-0006","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with the finite-time stabilization problem for a class of uncertain disturbed systems using linear robust control. The proposed algorithm is designed to provide the robustness of a linear feedback control scheme such that system trajectories arrive at a small-size attractive set around an unstable equilibrium in a finite time. To this end, an optimization problem with a linear matrix inequality constraint is presented. This means that the effects of external disturbances, as well as matched and mismatched uncertain dynamics, can be significantly reduced. Finally, the performance of the suggested closed-loop control strategies is shown by the trajectory tracking of an unmanned aerial vehicle flight.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"1 1","pages":"71 - 82"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Finite Time Stabilization Via Robust Control for Uncertain Disturbed Systems\",\"authors\":\"P. Ordaz, H. Alazki, B. Sánchez, M. Ordaz-Oliver\",\"doi\":\"10.34768/amcs-2023-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper deals with the finite-time stabilization problem for a class of uncertain disturbed systems using linear robust control. The proposed algorithm is designed to provide the robustness of a linear feedback control scheme such that system trajectories arrive at a small-size attractive set around an unstable equilibrium in a finite time. To this end, an optimization problem with a linear matrix inequality constraint is presented. This means that the effects of external disturbances, as well as matched and mismatched uncertain dynamics, can be significantly reduced. Finally, the performance of the suggested closed-loop control strategies is shown by the trajectory tracking of an unmanned aerial vehicle flight.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"1 1\",\"pages\":\"71 - 82\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2023-0006\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2023-0006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

利用线性鲁棒控制研究一类不确定扰动系统的有限时间镇定问题。所提出的算法旨在提供线性反馈控制方案的鲁棒性,使系统轨迹在有限时间内到达不稳定平衡点附近的小尺寸吸引集。为此,提出了一个具有线性矩阵不等式约束的优化问题。这意味着外部干扰的影响,以及匹配和不匹配的不确定动态,可以显着减少。最后,以无人机飞行轨迹跟踪为例,验证了所提闭环控制策略的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Finite Time Stabilization Via Robust Control for Uncertain Disturbed Systems
Abstract This paper deals with the finite-time stabilization problem for a class of uncertain disturbed systems using linear robust control. The proposed algorithm is designed to provide the robustness of a linear feedback control scheme such that system trajectories arrive at a small-size attractive set around an unstable equilibrium in a finite time. To this end, an optimization problem with a linear matrix inequality constraint is presented. This means that the effects of external disturbances, as well as matched and mismatched uncertain dynamics, can be significantly reduced. Finally, the performance of the suggested closed-loop control strategies is shown by the trajectory tracking of an unmanned aerial vehicle flight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
4.2 months
期刊介绍: The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences. The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas: -modern control theory and practice- artificial intelligence methods and their applications- applied mathematics and mathematical optimisation techniques- mathematical methods in engineering, computer science, and biology.
期刊最新文献
Improving Security Performance of Healthcare Data in the Internet of Medical Things using a Hybrid Metaheuristic Model Robust Flat Filtering Control of a Two Degrees of Freedom Helicopter Subject to Tail Rotor Disturbances Choice of the p-norm for High Level Classification Features Pruning in Modern Convolutional Neural Networks With Local Sensitivity Analysis Travelling Waves for Low–Grade Glioma Growth and Response to A Chemotherapy Model Asts: Autonomous Switching of Task–Level Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1