基于级联成分学习的无约束人脸对齐

Shizhan Zhu, Cheng Li, Chen Change Loy, Xiaoou Tang
{"title":"基于级联成分学习的无约束人脸对齐","authors":"Shizhan Zhu, Cheng Li, Chen Change Loy, Xiaoou Tang","doi":"10.1109/CVPR.2016.371","DOIUrl":null,"url":null,"abstract":"We present a practical approach to address the problem of unconstrained face alignment for a single image. In our unconstrained problem, we need to deal with large shape and appearance variations under extreme head poses and rich shape deformation. To equip cascaded regressors with the capability to handle global shape variation and irregular appearance-shape relation in the unconstrained scenario, we partition the optimisation space into multiple domains of homogeneous descent, and predict a shape as a composition of estimations from multiple domain-specific regressors. With a specially formulated learning objective and a novel tree splitting function, our approach is capable of estimating a robust and meaningful composition. In addition to achieving state-of-the-art accuracy over existing approaches, our framework is also an efficient solution (350 FPS), thanks to the on-the-fly domain exclusion mechanism and the capability of leveraging the fast pixel feature.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"C-31 1","pages":"3409-3417"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"173","resultStr":"{\"title\":\"Unconstrained Face Alignment via Cascaded Compositional Learning\",\"authors\":\"Shizhan Zhu, Cheng Li, Chen Change Loy, Xiaoou Tang\",\"doi\":\"10.1109/CVPR.2016.371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a practical approach to address the problem of unconstrained face alignment for a single image. In our unconstrained problem, we need to deal with large shape and appearance variations under extreme head poses and rich shape deformation. To equip cascaded regressors with the capability to handle global shape variation and irregular appearance-shape relation in the unconstrained scenario, we partition the optimisation space into multiple domains of homogeneous descent, and predict a shape as a composition of estimations from multiple domain-specific regressors. With a specially formulated learning objective and a novel tree splitting function, our approach is capable of estimating a robust and meaningful composition. In addition to achieving state-of-the-art accuracy over existing approaches, our framework is also an efficient solution (350 FPS), thanks to the on-the-fly domain exclusion mechanism and the capability of leveraging the fast pixel feature.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"C-31 1\",\"pages\":\"3409-3417\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"173\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 173

摘要

我们提出了一种实用的方法来解决单幅图像的无约束人脸对齐问题。在我们的无约束问题中,我们需要处理极端头部姿态和丰富形状变形下的大形状和外观变化。为了使级联回归量具有处理无约束场景下全局形状变化和不规则外观形状关系的能力,我们将优化空间划分为多个均匀下降的域,并将多个域特定回归量的估计组合预测形状。通过特殊制定的学习目标和新颖的树分裂函数,我们的方法能够估计出鲁棒且有意义的组合。除了在现有方法上实现最先进的精度之外,我们的框架也是一个高效的解决方案(350 FPS),这要归功于动态域排除机制和利用快速像素特性的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unconstrained Face Alignment via Cascaded Compositional Learning
We present a practical approach to address the problem of unconstrained face alignment for a single image. In our unconstrained problem, we need to deal with large shape and appearance variations under extreme head poses and rich shape deformation. To equip cascaded regressors with the capability to handle global shape variation and irregular appearance-shape relation in the unconstrained scenario, we partition the optimisation space into multiple domains of homogeneous descent, and predict a shape as a composition of estimations from multiple domain-specific regressors. With a specially formulated learning objective and a novel tree splitting function, our approach is capable of estimating a robust and meaningful composition. In addition to achieving state-of-the-art accuracy over existing approaches, our framework is also an efficient solution (350 FPS), thanks to the on-the-fly domain exclusion mechanism and the capability of leveraging the fast pixel feature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Me That Shoe Multivariate Regression on the Grassmannian for Predicting Novel Domains How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image Discovering the Physical Parts of an Articulated Object Class from Multiple Videos Simultaneous Optical Flow and Intensity Estimation from an Event Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1