B. Tamir, Ismael Lucas De Paiva, Zohar Schwartzman-Nowik, E. Cohen
{"title":"量子逻辑熵:基本原理和一般性质","authors":"B. Tamir, Ismael Lucas De Paiva, Zohar Schwartzman-Nowik, E. Cohen","doi":"10.1051/fopen/2021005","DOIUrl":null,"url":null,"abstract":"Logical entropy gives a measure, in the sense of measure theory, of the distinctions of a given partition of a set, an idea that can be naturally generalized to classical probability distributions. Here, we analyze how this fundamental concept and other related definitions can be applied to the study of quantum systems with the use of quantum logical entropy. Moreover, we prove several properties of this entropy for generic density matrices that may be relevant to various areas of quantum mechanics and quantum information. Furthermore, we extend the notion of quantum logical entropy to post-selected systems.","PeriodicalId":6841,"journal":{"name":"4open","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quantum logical entropy: fundamentals and general properties\",\"authors\":\"B. Tamir, Ismael Lucas De Paiva, Zohar Schwartzman-Nowik, E. Cohen\",\"doi\":\"10.1051/fopen/2021005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logical entropy gives a measure, in the sense of measure theory, of the distinctions of a given partition of a set, an idea that can be naturally generalized to classical probability distributions. Here, we analyze how this fundamental concept and other related definitions can be applied to the study of quantum systems with the use of quantum logical entropy. Moreover, we prove several properties of this entropy for generic density matrices that may be relevant to various areas of quantum mechanics and quantum information. Furthermore, we extend the notion of quantum logical entropy to post-selected systems.\",\"PeriodicalId\":6841,\"journal\":{\"name\":\"4open\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/fopen/2021005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/fopen/2021005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum logical entropy: fundamentals and general properties
Logical entropy gives a measure, in the sense of measure theory, of the distinctions of a given partition of a set, an idea that can be naturally generalized to classical probability distributions. Here, we analyze how this fundamental concept and other related definitions can be applied to the study of quantum systems with the use of quantum logical entropy. Moreover, we prove several properties of this entropy for generic density matrices that may be relevant to various areas of quantum mechanics and quantum information. Furthermore, we extend the notion of quantum logical entropy to post-selected systems.