基于深度学习的人体动作识别关键帧和骨架提取

Hai-Hong Phan, T. T. Nguyen, Huu Phuc Ngo, Huu-Nhan Nguyen, Do Minh Hieu, Cao Truong Tran, Bao Ngoc Vi
{"title":"基于深度学习的人体动作识别关键帧和骨架提取","authors":"Hai-Hong Phan, T. T. Nguyen, Huu Phuc Ngo, Huu-Nhan Nguyen, Do Minh Hieu, Cao Truong Tran, Bao Ngoc Vi","doi":"10.1109/RIVF51545.2021.9642132","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient approach for activity recognition in videos with key frame extraction and deep learning architectures, named KFSENet. First, we propose a key frame selection technique in a motion sequence of 2D frames based on gradient of optical flow to select the most important frames which characterize different actions. From these frames, we extract key points using pose estimation techniques and employ them further in an efficient Deep learning network to learn the action model. In this way, the proposed method be able to remove insignificant frames and decrease the length of the motion vector. We only consider the remaining essential informative frames in the process of action recognition, thus the proposed method is sufficiently fast and robust. We evaluate the proposed method intensively on public dataset named UCF Sport and our self-built HNH dataset in our experiments. We verify that our proposed algorithm receive state-of-the-art on these datasets.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"24 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Key frame and skeleton extraction for deep learning-based human action recognition\",\"authors\":\"Hai-Hong Phan, T. T. Nguyen, Huu Phuc Ngo, Huu-Nhan Nguyen, Do Minh Hieu, Cao Truong Tran, Bao Ngoc Vi\",\"doi\":\"10.1109/RIVF51545.2021.9642132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an efficient approach for activity recognition in videos with key frame extraction and deep learning architectures, named KFSENet. First, we propose a key frame selection technique in a motion sequence of 2D frames based on gradient of optical flow to select the most important frames which characterize different actions. From these frames, we extract key points using pose estimation techniques and employ them further in an efficient Deep learning network to learn the action model. In this way, the proposed method be able to remove insignificant frames and decrease the length of the motion vector. We only consider the remaining essential informative frames in the process of action recognition, thus the proposed method is sufficiently fast and robust. We evaluate the proposed method intensively on public dataset named UCF Sport and our self-built HNH dataset in our experiments. We verify that our proposed algorithm receive state-of-the-art on these datasets.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"24 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种基于关键帧提取和深度学习架构的视频活动识别方法,称为KFSENet。首先,我们提出了一种基于光流梯度的二维帧运动序列关键帧选择技术,以选择表征不同动作的最重要帧。从这些帧中,我们使用姿态估计技术提取关键点,并将其进一步应用于高效的深度学习网络中以学习动作模型。这样,所提出的方法能够去除无关紧要的帧并减小运动向量的长度。在动作识别过程中只考虑剩余的基本信息帧,因此该方法具有足够的速度和鲁棒性。在实验中,我们对UCF Sport公共数据集和我们自建的HNH数据集进行了集中评估。我们验证我们提出的算法在这些数据集上获得了最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Key frame and skeleton extraction for deep learning-based human action recognition
In this paper, we propose an efficient approach for activity recognition in videos with key frame extraction and deep learning architectures, named KFSENet. First, we propose a key frame selection technique in a motion sequence of 2D frames based on gradient of optical flow to select the most important frames which characterize different actions. From these frames, we extract key points using pose estimation techniques and employ them further in an efficient Deep learning network to learn the action model. In this way, the proposed method be able to remove insignificant frames and decrease the length of the motion vector. We only consider the remaining essential informative frames in the process of action recognition, thus the proposed method is sufficiently fast and robust. We evaluate the proposed method intensively on public dataset named UCF Sport and our self-built HNH dataset in our experiments. We verify that our proposed algorithm receive state-of-the-art on these datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Image Watermarking Scheme Using LU Decomposition Streaming Algorithm for Submodular Cover Problem Under Noise Hand part segmentations in hand mask of egocentric images using Distance Transformation Map and SVM Classifier Multiple Imputation by Generative Adversarial Networks for Classification with Incomplete Data MC-OCR Challenge 2021: Simple approach for receipt information extraction and quality evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1