介入放射条件下Gafchromic XR-RV3膜的校正

IF 0.7 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Polish Journal of Medical Physics and Engineering Pub Date : 2021-06-01 DOI:10.2478/pjmpe-2021-0020
Joanna Kidoń, K. Polaczek-Grelik, K. Golba, W. Wojakowski, A. Ochała
{"title":"介入放射条件下Gafchromic XR-RV3膜的校正","authors":"Joanna Kidoń, K. Polaczek-Grelik, K. Golba, W. Wojakowski, A. Ochała","doi":"10.2478/pjmpe-2021-0020","DOIUrl":null,"url":null,"abstract":"Abstract Introduction: The purpose of the study was the calibration of Gafchromic films in clinical interventional radiology conditions and the assessment of the influence of dose range, the shape of the fitting curve, and its practical application. The aim of the work was to show how practically perform calibration in a wide range of doses. Material and methods: Gafchromic XR–RV3 films were included in the study. The calibration was performed for A and B film series separately. Doses from the range of 0 – 8 Gy were used. Film dosimeters were read out in reflective mode with a commercial flatbed scanner. Results: Among various degrees of a polynomial function, the best fit, which fulfilled the chosen criterion of 95% agreement between measured and reconstructed doses and simple equation criterion, was observed for third-degree polynomial. The fitting curve where the dose is the function of optical density (logMPV) was demonstrated to be more precise than the fitting curve based on MPV only. To minimize the difference between dose absorbed by the film and dose reconstructed from the fitting curve below 5% it is necessary to divide the calibration range of 0 – 8 Gy into two subranges for use in interventional radiology. This difference was set at a maximum level of 3.8% and 1.9% for the lowand high-dose range, respectively. Each series of films may have a slightly different calibration curve, especially for the low dose range. A deviation of up to 36% between two batches of Gafchromic film was observed. Conclusions: For the third-degree polynomial fitting function (one of the recommended in the literature) calibration should be done into low and high dose ranges and for each batch separately. A systematic error higher than 20% could be introduced when the fitting curve from one film batch is applied to the other film batch.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"40 1","pages":"165 - 173"},"PeriodicalIF":0.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration of Gafchromic XR-RV3 film under interventional radiology conditions\",\"authors\":\"Joanna Kidoń, K. Polaczek-Grelik, K. Golba, W. Wojakowski, A. Ochała\",\"doi\":\"10.2478/pjmpe-2021-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Introduction: The purpose of the study was the calibration of Gafchromic films in clinical interventional radiology conditions and the assessment of the influence of dose range, the shape of the fitting curve, and its practical application. The aim of the work was to show how practically perform calibration in a wide range of doses. Material and methods: Gafchromic XR–RV3 films were included in the study. The calibration was performed for A and B film series separately. Doses from the range of 0 – 8 Gy were used. Film dosimeters were read out in reflective mode with a commercial flatbed scanner. Results: Among various degrees of a polynomial function, the best fit, which fulfilled the chosen criterion of 95% agreement between measured and reconstructed doses and simple equation criterion, was observed for third-degree polynomial. The fitting curve where the dose is the function of optical density (logMPV) was demonstrated to be more precise than the fitting curve based on MPV only. To minimize the difference between dose absorbed by the film and dose reconstructed from the fitting curve below 5% it is necessary to divide the calibration range of 0 – 8 Gy into two subranges for use in interventional radiology. This difference was set at a maximum level of 3.8% and 1.9% for the lowand high-dose range, respectively. Each series of films may have a slightly different calibration curve, especially for the low dose range. A deviation of up to 36% between two batches of Gafchromic film was observed. Conclusions: For the third-degree polynomial fitting function (one of the recommended in the literature) calibration should be done into low and high dose ranges and for each batch separately. A systematic error higher than 20% could be introduced when the fitting curve from one film batch is applied to the other film batch.\",\"PeriodicalId\":53955,\"journal\":{\"name\":\"Polish Journal of Medical Physics and Engineering\",\"volume\":\"40 1\",\"pages\":\"165 - 173\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Medical Physics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/pjmpe-2021-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Medical Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pjmpe-2021-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本研究的目的是在临床介入放射学条件下对Gafchromic底片进行校正,评估剂量范围、拟合曲线形状及其实际应用的影响。这项工作的目的是展示如何在大剂量范围内实际进行校准。材料和方法:采用Gafchromic XR-RV3薄膜。分别对A系列和B系列薄膜进行校准。剂量范围为0 - 8gy。用商用平板扫描仪以反射模式读出胶片剂量计。结果:在多项式函数的不同阶数中,三阶多项式的拟合最佳,满足测量剂量与重建剂量95%一致性的选择准则和简单方程准则。结果表明,剂量随光密度(logMPV)变化的拟合曲线比仅基于光密度的拟合曲线更为精确。为了使膜吸收剂量与拟合曲线重构剂量之间的差值小于5%,有必要将0 - 8gy的校准范围划分为两个子范围,以用于介入放射学。在低剂量和高剂量范围内,这一差异的最大水平分别为3.8%和1.9%。每个系列的胶片可能有稍微不同的校准曲线,特别是对于低剂量范围。观察到两批Gafchromic薄膜之间的偏差高达36%。结论:对于三次多项式拟合函数(文献中推荐的方法之一),应按低剂量和高剂量范围分别进行校准,每批分别进行校准。将一批膜的拟合曲线应用于另一批膜时,系统误差大于20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calibration of Gafchromic XR-RV3 film under interventional radiology conditions
Abstract Introduction: The purpose of the study was the calibration of Gafchromic films in clinical interventional radiology conditions and the assessment of the influence of dose range, the shape of the fitting curve, and its practical application. The aim of the work was to show how practically perform calibration in a wide range of doses. Material and methods: Gafchromic XR–RV3 films were included in the study. The calibration was performed for A and B film series separately. Doses from the range of 0 – 8 Gy were used. Film dosimeters were read out in reflective mode with a commercial flatbed scanner. Results: Among various degrees of a polynomial function, the best fit, which fulfilled the chosen criterion of 95% agreement between measured and reconstructed doses and simple equation criterion, was observed for third-degree polynomial. The fitting curve where the dose is the function of optical density (logMPV) was demonstrated to be more precise than the fitting curve based on MPV only. To minimize the difference between dose absorbed by the film and dose reconstructed from the fitting curve below 5% it is necessary to divide the calibration range of 0 – 8 Gy into two subranges for use in interventional radiology. This difference was set at a maximum level of 3.8% and 1.9% for the lowand high-dose range, respectively. Each series of films may have a slightly different calibration curve, especially for the low dose range. A deviation of up to 36% between two batches of Gafchromic film was observed. Conclusions: For the third-degree polynomial fitting function (one of the recommended in the literature) calibration should be done into low and high dose ranges and for each batch separately. A systematic error higher than 20% could be introduced when the fitting curve from one film batch is applied to the other film batch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polish Journal of Medical Physics and Engineering
Polish Journal of Medical Physics and Engineering RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
1.30
自引率
0.00%
发文量
19
期刊介绍: Polish Journal of Medical Physics and Engineering (PJMPE) (Online ISSN: 1898-0309; Print ISSN: 1425-4689) is an official publication of the Polish Society of Medical Physics. It is a peer-reviewed, open access scientific journal with no publication fees. The issues are published quarterly online. The Journal publishes original contribution in medical physics and biomedical engineering.
期刊最新文献
Parametrization of subsegmental infarcts using high spatial resolution 2DSTE and synthetic ultrasonic data Automated differential diagnostics of respiratory diseases using an electronic stethoscope Evaluating the impact of anatomical changes on dose distributions in head and neck cancer Comparing eDQE and eNEQ metrics – is there an alternative approach to assessing image quality in digital mammography? Vascular stiffness in cold pressor test hyper-reactors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1