一种基于稀疏学习的增强失匹配信号抑制能力检测器

Sudan Han, L. Pallotta, G. Giunta, Wanli Ma, D. Orlando
{"title":"一种基于稀疏学习的增强失匹配信号抑制能力检测器","authors":"Sudan Han, L. Pallotta, G. Giunta, Wanli Ma, D. Orlando","doi":"10.1109/SAM48682.2020.9104374","DOIUrl":null,"url":null,"abstract":"This paper devises a tunable detection architecture to deal with mismatched signals embedded in Gaussian interference with unknown covariance matrix based on a sparse recovery technique. Specifically, a sparse learning method is exploited to estimate the amplitude and angle of arrival of the possible targets, which are then employed to design detectors relying on the two-stage detection paradigm. Remarkably, the new decision scheme exhibits a bounded-constant false alarm rate property. The performance assessment, carried out through Monte Carlo simulations, shows that the new detectors can outperform classic counterparts in terms of rejecting mismatched signals, while retaining reasonable detection performance for matched signals.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"55 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sparse Learning Based Detector with Enhanced Mismatched Signals Rejection Capabilities\",\"authors\":\"Sudan Han, L. Pallotta, G. Giunta, Wanli Ma, D. Orlando\",\"doi\":\"10.1109/SAM48682.2020.9104374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper devises a tunable detection architecture to deal with mismatched signals embedded in Gaussian interference with unknown covariance matrix based on a sparse recovery technique. Specifically, a sparse learning method is exploited to estimate the amplitude and angle of arrival of the possible targets, which are then employed to design detectors relying on the two-stage detection paradigm. Remarkably, the new decision scheme exhibits a bounded-constant false alarm rate property. The performance assessment, carried out through Monte Carlo simulations, shows that the new detectors can outperform classic counterparts in terms of rejecting mismatched signals, while retaining reasonable detection performance for matched signals.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"55 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文设计了一种基于稀疏恢复技术的可调检测体系来处理嵌入在协方差矩阵未知的高斯干扰中的不匹配信号。具体而言,利用稀疏学习方法估计可能目标的振幅和到达角度,然后根据两阶段检测范式设计检测器。值得注意的是,该决策方案具有有界常数虚警率特性。通过蒙特卡罗模拟进行的性能评估表明,新检测器在拒绝不匹配信号方面优于经典检测器,同时保持了对匹配信号的合理检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Sparse Learning Based Detector with Enhanced Mismatched Signals Rejection Capabilities
This paper devises a tunable detection architecture to deal with mismatched signals embedded in Gaussian interference with unknown covariance matrix based on a sparse recovery technique. Specifically, a sparse learning method is exploited to estimate the amplitude and angle of arrival of the possible targets, which are then employed to design detectors relying on the two-stage detection paradigm. Remarkably, the new decision scheme exhibits a bounded-constant false alarm rate property. The performance assessment, carried out through Monte Carlo simulations, shows that the new detectors can outperform classic counterparts in terms of rejecting mismatched signals, while retaining reasonable detection performance for matched signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1