基于预测控制的移动机器人三维运动能耗优化

M. Yacoub, D. Necsulescu, J. Sasiadek
{"title":"基于预测控制的移动机器人三维运动能耗优化","authors":"M. Yacoub, D. Necsulescu, J. Sasiadek","doi":"10.1109/ASCC.2013.6606254","DOIUrl":null,"url":null,"abstract":"As the demand for field mobile robots in off-road operations increased, the need to investigate the 3D motion for mobile robots became important. One of the main difficulties in the 3D motion of a mobile robot is the torque saturation of the DC motors of the wheels that occurs while climbing hills. In the present work, off-road conditions are utilized to benefit by avoiding torque saturation. Energy optimization algorithm using predictive control is implemented on a two-DC motor-driven wheels mobile robot while crossing a ditch. The developed algorithm is simulated and compared with the PID control and the open-loop control. The predictive control showed more capability to avoid torque saturation and noticeable reduction in the energy consumption. Furthermore, using the wheels motors armature current instead of the supply voltage as control variable in the predictive control showed more robust speed control. Simulation results showed that in case of knowing the ditch dimensions ahead of time, the developed algorithm is feasible.","PeriodicalId":6304,"journal":{"name":"2013 9th Asian Control Conference (ASCC)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Energy consumption optimization for mobile robots in three-dimension motion using predictive control\",\"authors\":\"M. Yacoub, D. Necsulescu, J. Sasiadek\",\"doi\":\"10.1109/ASCC.2013.6606254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the demand for field mobile robots in off-road operations increased, the need to investigate the 3D motion for mobile robots became important. One of the main difficulties in the 3D motion of a mobile robot is the torque saturation of the DC motors of the wheels that occurs while climbing hills. In the present work, off-road conditions are utilized to benefit by avoiding torque saturation. Energy optimization algorithm using predictive control is implemented on a two-DC motor-driven wheels mobile robot while crossing a ditch. The developed algorithm is simulated and compared with the PID control and the open-loop control. The predictive control showed more capability to avoid torque saturation and noticeable reduction in the energy consumption. Furthermore, using the wheels motors armature current instead of the supply voltage as control variable in the predictive control showed more robust speed control. Simulation results showed that in case of knowing the ditch dimensions ahead of time, the developed algorithm is feasible.\",\"PeriodicalId\":6304,\"journal\":{\"name\":\"2013 9th Asian Control Conference (ASCC)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 9th Asian Control Conference (ASCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASCC.2013.6606254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th Asian Control Conference (ASCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASCC.2013.6606254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着越野作业对现场移动机器人需求的增加,研究移动机器人的三维运动变得非常重要。移动机器人三维运动的主要困难之一是在爬坡时发生的车轮直流电机的转矩饱和。在目前的工作中,利用越野条件来避免扭矩饱和。针对双直流电机驱动轮式移动机器人过沟过程,实现了基于预测控制的能量优化算法。对该算法进行了仿真,并与PID控制和开环控制进行了比较。预测控制更能避免转矩饱和,并能显著降低能耗。此外,在预测控制中,以车轮电机电枢电流代替电源电压作为控制变量,速度控制具有更强的鲁棒性。仿真结果表明,在提前知道沟槽尺寸的情况下,所提出的算法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy consumption optimization for mobile robots in three-dimension motion using predictive control
As the demand for field mobile robots in off-road operations increased, the need to investigate the 3D motion for mobile robots became important. One of the main difficulties in the 3D motion of a mobile robot is the torque saturation of the DC motors of the wheels that occurs while climbing hills. In the present work, off-road conditions are utilized to benefit by avoiding torque saturation. Energy optimization algorithm using predictive control is implemented on a two-DC motor-driven wheels mobile robot while crossing a ditch. The developed algorithm is simulated and compared with the PID control and the open-loop control. The predictive control showed more capability to avoid torque saturation and noticeable reduction in the energy consumption. Furthermore, using the wheels motors armature current instead of the supply voltage as control variable in the predictive control showed more robust speed control. Simulation results showed that in case of knowing the ditch dimensions ahead of time, the developed algorithm is feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-variable double resonant controller for fast image scanning of atomic force microscope FA system integration using robotic intelligent componets Parameter identification of bacterial growth bioprocesses using particle swarm optimization Velocity planning to optimize traction losses in a City-Bus Equipped with Permanent Magnet Three-Phase Synchronous Motors Stabilization of uncertain discrete time-delayed systems via delta operator approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1