商品的连通性

F. Diebold, L. Liu, K. Yilmaz
{"title":"商品的连通性","authors":"F. Diebold, L. Liu, K. Yilmaz","doi":"10.2139/ssrn.3038826","DOIUrl":null,"url":null,"abstract":"We use variance decompositions from high-dimensional vector autoregressions to characterize connectedness in 19 key commodity return volatilities, 2011-2016. We study both static (full-sample) and dynamic (rolling-sample) connectedness. We summarize and visualize the results using tools from network analysis. The results reveal clear clustering of commodities into groups that match traditional industry groupings, but with some notable differences. The energy sector is most important in terms of sending shocks to others, and energy, industrial metals, and precious metals are themselves tightly connected.","PeriodicalId":12584,"journal":{"name":"Global Commodity Issues eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Commodity Connectedness\",\"authors\":\"F. Diebold, L. Liu, K. Yilmaz\",\"doi\":\"10.2139/ssrn.3038826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use variance decompositions from high-dimensional vector autoregressions to characterize connectedness in 19 key commodity return volatilities, 2011-2016. We study both static (full-sample) and dynamic (rolling-sample) connectedness. We summarize and visualize the results using tools from network analysis. The results reveal clear clustering of commodities into groups that match traditional industry groupings, but with some notable differences. The energy sector is most important in terms of sending shocks to others, and energy, industrial metals, and precious metals are themselves tightly connected.\",\"PeriodicalId\":12584,\"journal\":{\"name\":\"Global Commodity Issues eJournal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Commodity Issues eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3038826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Commodity Issues eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3038826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

我们使用高维向量自回归的方差分解来表征2011-2016年19个关键商品收益波动的连通性。我们研究静态(全样本)和动态(滚动样本)连通性。我们使用网络分析工具对结果进行总结和可视化。结果显示,商品明显集聚到与传统行业分类相匹配的群体中,但存在一些显著差异。能源行业对其他行业的冲击最为重要,而能源、工业金属和贵金属本身是紧密相连的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Commodity Connectedness
We use variance decompositions from high-dimensional vector autoregressions to characterize connectedness in 19 key commodity return volatilities, 2011-2016. We study both static (full-sample) and dynamic (rolling-sample) connectedness. We summarize and visualize the results using tools from network analysis. The results reveal clear clustering of commodities into groups that match traditional industry groupings, but with some notable differences. The energy sector is most important in terms of sending shocks to others, and energy, industrial metals, and precious metals are themselves tightly connected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Manufacturer Encroachment in a Product Market and Common Ownership between Supply Chain Parties WTO आणि ग्रामीण विकासात कृषी (Agriculture in the WTO and Rural Development) Mechanics of Global Value Chains: India's Perspective A Block-Chain of Things (BcoT) Based System for Detecting Counterfeit Products in Supply Chain Management Are commodity futures a hedge against inflation? A Markov-switching approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1