基于混合元启发式算法的双笼型异步电动机参数估计

J. Vukašinović, Miloš Milovanović, N. Arsic, Jordan Radosavljević, S. Statkic
{"title":"基于混合元启发式算法的双笼型异步电动机参数估计","authors":"J. Vukašinović, Miloš Milovanović, N. Arsic, Jordan Radosavljević, S. Statkic","doi":"10.1109/INFOTEH53737.2022.9751304","DOIUrl":null,"url":null,"abstract":"In this paper, a hybrid metaheuristic algorithm, named the hybrid Phasor Particle Swarm Optimization and Gravitational Search Algorithm (PPSOGSA), is proposed for estimating parameters of double-cage induction motors. The parameters are obtained by minimizing the objective function related to the error between the calculated and manufacturer data. The performances of the proposed algorithm are analyzed and evaluated using the motors of different powers. Compared to the original PSOGSA and other algorithms applied in solving the parameter estimation problem, it is found that the proposed algorithm has better performances.","PeriodicalId":6839,"journal":{"name":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","volume":"42 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parameters estimation of double-cage induction motors using a hybrid metaheuristic algorithm\",\"authors\":\"J. Vukašinović, Miloš Milovanović, N. Arsic, Jordan Radosavljević, S. Statkic\",\"doi\":\"10.1109/INFOTEH53737.2022.9751304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a hybrid metaheuristic algorithm, named the hybrid Phasor Particle Swarm Optimization and Gravitational Search Algorithm (PPSOGSA), is proposed for estimating parameters of double-cage induction motors. The parameters are obtained by minimizing the objective function related to the error between the calculated and manufacturer data. The performances of the proposed algorithm are analyzed and evaluated using the motors of different powers. Compared to the original PSOGSA and other algorithms applied in solving the parameter estimation problem, it is found that the proposed algorithm has better performances.\",\"PeriodicalId\":6839,\"journal\":{\"name\":\"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"volume\":\"42 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOTEH53737.2022.9751304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTEH53737.2022.9751304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种用于双笼型异步电动机参数估计的混合元启发式算法——相量粒子群优化与引力搜索混合算法(PPSOGSA)。通过最小化与计算数据与制造商数据之间的误差相关的目标函数来获得参数。利用不同功率的电机对算法的性能进行了分析和评价。与原有的PSOGSA算法和其他用于解决参数估计问题的算法进行比较,发现本文算法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameters estimation of double-cage induction motors using a hybrid metaheuristic algorithm
In this paper, a hybrid metaheuristic algorithm, named the hybrid Phasor Particle Swarm Optimization and Gravitational Search Algorithm (PPSOGSA), is proposed for estimating parameters of double-cage induction motors. The parameters are obtained by minimizing the objective function related to the error between the calculated and manufacturer data. The performances of the proposed algorithm are analyzed and evaluated using the motors of different powers. Compared to the original PSOGSA and other algorithms applied in solving the parameter estimation problem, it is found that the proposed algorithm has better performances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PV system site selection using PVGIS and Fuzzy AHP Face Mask Detection Based on Machine Learning and Edge Computing Smart Production Systems: Methods and Application Analyzing the Effects of Abnormal Resonance Voltages using Artificial Neural Networks Real-Time Data Processing Techniques for a Scalable Spatial and Temporal Dimension Reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1