利用重组白细胞介素-33 Trap Fc蛋白阻断白细胞介素-33活性可能是一种治疗过敏性哮喘的新策略

Thao Thi Thanh Nguyen, Phuc Hong Vo, Quan Dang Nguyen
{"title":"利用重组白细胞介素-33 Trap Fc蛋白阻断白细胞介素-33活性可能是一种治疗过敏性哮喘的新策略","authors":"Thao Thi Thanh Nguyen, Phuc Hong Vo, Quan Dang Nguyen","doi":"10.15625/1811-4989/16671","DOIUrl":null,"url":null,"abstract":"The majority of autoimmune and allergic diseases are associated with abnormal expression of interleukin (IL)-33, a member of the IL-1 family of cytokines, that function dually as a proinflammatory cytokine and a transcriptional factor. We created an IL-33 inhibitor called \"IL-33 Trap Fc\" constructed by fusion of an Fc fragment of human immunoglobulin G1 and two distinct extracellular part receptors involved in interacting with IL-33, IL-1 receptors accessory protein, and IL-33 receptor. IL-33 Trap Fc was expressed by two systems, mammalian HEK293 cells and Pichia pastoris yeast. We found that these recombinant proteins were expressed as a glycoprotein and perhaps in dimeric form. IL-33 Trap Fc from HEK293 and P. pastoris suppressed the activity of IL-33 in vitro culture conditions. The glycosylation of IL-33 Trap expressed by P. pastoris yeast was more intensive and heterogeneous than the counterpart protein expressed from HEK293 cells. That is maybe one reason leading to a substantial decrease in the activity of IL-33 Trap Fc from P. pastoris compared with that from HEK293 cells. We also demonstrated that IL-33 Trap Fc expressed from HEK293 cells had therapeutic effects in ovalbumin-induced asthma mouse model. These data collectively suggested that IL-33 Trap Fc potently blocks IL-33 in vitro and in vivo, which may be a novel therapeutic strategy for IL-33-mediated allergic diseases.","PeriodicalId":23622,"journal":{"name":"Vietnam Journal of Biotechnology","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blockade of interleukin-33 activities by recombinant interleukin-33 Trap Fc protein would be a novel therapeutic strategy in allergic asthma\",\"authors\":\"Thao Thi Thanh Nguyen, Phuc Hong Vo, Quan Dang Nguyen\",\"doi\":\"10.15625/1811-4989/16671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The majority of autoimmune and allergic diseases are associated with abnormal expression of interleukin (IL)-33, a member of the IL-1 family of cytokines, that function dually as a proinflammatory cytokine and a transcriptional factor. We created an IL-33 inhibitor called \\\"IL-33 Trap Fc\\\" constructed by fusion of an Fc fragment of human immunoglobulin G1 and two distinct extracellular part receptors involved in interacting with IL-33, IL-1 receptors accessory protein, and IL-33 receptor. IL-33 Trap Fc was expressed by two systems, mammalian HEK293 cells and Pichia pastoris yeast. We found that these recombinant proteins were expressed as a glycoprotein and perhaps in dimeric form. IL-33 Trap Fc from HEK293 and P. pastoris suppressed the activity of IL-33 in vitro culture conditions. The glycosylation of IL-33 Trap expressed by P. pastoris yeast was more intensive and heterogeneous than the counterpart protein expressed from HEK293 cells. That is maybe one reason leading to a substantial decrease in the activity of IL-33 Trap Fc from P. pastoris compared with that from HEK293 cells. We also demonstrated that IL-33 Trap Fc expressed from HEK293 cells had therapeutic effects in ovalbumin-induced asthma mouse model. These data collectively suggested that IL-33 Trap Fc potently blocks IL-33 in vitro and in vivo, which may be a novel therapeutic strategy for IL-33-mediated allergic diseases.\",\"PeriodicalId\":23622,\"journal\":{\"name\":\"Vietnam Journal of Biotechnology\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/1811-4989/16671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1811-4989/16671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数自身免疫性和过敏性疾病与白细胞介素(IL)-33的异常表达有关,IL -33是IL-1细胞因子家族的成员,具有促炎细胞因子和转录因子的双重功能。我们创建了一种IL-33抑制剂,称为“IL-33 Trap Fc”,通过融合人免疫球蛋白G1的Fc片段和两个不同的参与与IL-33、IL-1受体辅助蛋白和IL-33受体相互作用的细胞外部分受体构建而成。IL-33 Trap Fc通过哺乳动物HEK293细胞和毕赤酵母两种系统表达。我们发现这些重组蛋白以糖蛋白形式表达,可能以二聚体形式表达。来自HEK293和P. pastoris的IL-33 Trap Fc在体外培养条件下抑制了IL-33的活性。与HEK293细胞表达的IL-33 Trap相比,酵母表达的IL-33 Trap的糖基化更强烈,异质性更强。这可能是导致P. pastoris与HEK293细胞相比IL-33 Trap Fc活性显著降低的原因之一。我们还证实了HEK293细胞表达的IL-33 Trap Fc在卵清蛋白诱导的哮喘小鼠模型中具有治疗作用。这些数据共同表明,IL-33 Trap Fc在体外和体内都能有效阻断IL-33,这可能是IL-33介导的过敏性疾病的一种新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blockade of interleukin-33 activities by recombinant interleukin-33 Trap Fc protein would be a novel therapeutic strategy in allergic asthma
The majority of autoimmune and allergic diseases are associated with abnormal expression of interleukin (IL)-33, a member of the IL-1 family of cytokines, that function dually as a proinflammatory cytokine and a transcriptional factor. We created an IL-33 inhibitor called "IL-33 Trap Fc" constructed by fusion of an Fc fragment of human immunoglobulin G1 and two distinct extracellular part receptors involved in interacting with IL-33, IL-1 receptors accessory protein, and IL-33 receptor. IL-33 Trap Fc was expressed by two systems, mammalian HEK293 cells and Pichia pastoris yeast. We found that these recombinant proteins were expressed as a glycoprotein and perhaps in dimeric form. IL-33 Trap Fc from HEK293 and P. pastoris suppressed the activity of IL-33 in vitro culture conditions. The glycosylation of IL-33 Trap expressed by P. pastoris yeast was more intensive and heterogeneous than the counterpart protein expressed from HEK293 cells. That is maybe one reason leading to a substantial decrease in the activity of IL-33 Trap Fc from P. pastoris compared with that from HEK293 cells. We also demonstrated that IL-33 Trap Fc expressed from HEK293 cells had therapeutic effects in ovalbumin-induced asthma mouse model. These data collectively suggested that IL-33 Trap Fc potently blocks IL-33 in vitro and in vivo, which may be a novel therapeutic strategy for IL-33-mediated allergic diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of commercial probiotics and antibiotics on the growth of Campylobacter isolated from chicken meat in Ho Chi Minh city markets Study on the transient expression of infectious bronchitis virus spike protein in Nicotiana benthamiana leaves Association study of NAT2 rs1799931 polymorphism with male infertility Development of CRISPR/Cas9 systems to induce targeted mutations in the promoter region of the OsSRFP1 gene in rice Wild-type Caenorhabditis sinica, a model nematode for speciation and evolution, massively found in Vietnam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1