{"title":"基于计算机视觉方法的胸部ct图像新冠肺炎诊断模块的开发","authors":"A. R. Teplyakova, A. Kuznetsov","doi":"10.17587/it.29.204-214","DOIUrl":null,"url":null,"abstract":"The implementation of a module of a medical decision support system for diagnosing COVID-19 using chest CT images is considered. The U-Net architecture is used for segmentation of lung parenchyma and pathological areas in chest CT images, the DSC and IoU values for parenchyma are 0.951 and 0.933, for pathological areas — 0.97 and 0.959, respectively. A method for image pre-processing based on adaptive histogram equalization is described. Methods for segmentation masks postprocessing are also proposed. The first of them is necessary to separate masks into masks of the left and right lungs; it is based on the analysis of areas and mutual positions of contours. The second one is needed to eliminate artifacts. In addition to image processing methods, approaches that generate the data necessary for radiologists to make a diagnosis are also implemented (the volumes of both lungs and pathological findings in them are calculated, percentages of parenchymal tissue involvement in the pathological process are determined, the severity of the disease is assessed). The algorithms for generating a processed series of images and a DICOM SR are described. The average time spent by the module on processing one CT study containing about 600 slices, with a video memory limit of 6 GB, is 68 s, and with a limit of 8 GB — 56 s. Considering that the approximate time spent by a radiologist to process a study is about 6 minutes, the developed module can be effectively used in medical practice to reduce the burden on medical personnel.","PeriodicalId":37476,"journal":{"name":"Radioelektronika, Nanosistemy, Informacionnye Tehnologii","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Module for COVID-19 Diagnostics Based on Computed Tomography Images of the Chest Based on Computer Vision Methods\",\"authors\":\"A. R. Teplyakova, A. Kuznetsov\",\"doi\":\"10.17587/it.29.204-214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implementation of a module of a medical decision support system for diagnosing COVID-19 using chest CT images is considered. The U-Net architecture is used for segmentation of lung parenchyma and pathological areas in chest CT images, the DSC and IoU values for parenchyma are 0.951 and 0.933, for pathological areas — 0.97 and 0.959, respectively. A method for image pre-processing based on adaptive histogram equalization is described. Methods for segmentation masks postprocessing are also proposed. The first of them is necessary to separate masks into masks of the left and right lungs; it is based on the analysis of areas and mutual positions of contours. The second one is needed to eliminate artifacts. In addition to image processing methods, approaches that generate the data necessary for radiologists to make a diagnosis are also implemented (the volumes of both lungs and pathological findings in them are calculated, percentages of parenchymal tissue involvement in the pathological process are determined, the severity of the disease is assessed). The algorithms for generating a processed series of images and a DICOM SR are described. The average time spent by the module on processing one CT study containing about 600 slices, with a video memory limit of 6 GB, is 68 s, and with a limit of 8 GB — 56 s. Considering that the approximate time spent by a radiologist to process a study is about 6 minutes, the developed module can be effectively used in medical practice to reduce the burden on medical personnel.\",\"PeriodicalId\":37476,\"journal\":{\"name\":\"Radioelektronika, Nanosistemy, Informacionnye Tehnologii\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioelektronika, Nanosistemy, Informacionnye Tehnologii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17587/it.29.204-214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioelektronika, Nanosistemy, Informacionnye Tehnologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17587/it.29.204-214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
Development of a Module for COVID-19 Diagnostics Based on Computed Tomography Images of the Chest Based on Computer Vision Methods
The implementation of a module of a medical decision support system for diagnosing COVID-19 using chest CT images is considered. The U-Net architecture is used for segmentation of lung parenchyma and pathological areas in chest CT images, the DSC and IoU values for parenchyma are 0.951 and 0.933, for pathological areas — 0.97 and 0.959, respectively. A method for image pre-processing based on adaptive histogram equalization is described. Methods for segmentation masks postprocessing are also proposed. The first of them is necessary to separate masks into masks of the left and right lungs; it is based on the analysis of areas and mutual positions of contours. The second one is needed to eliminate artifacts. In addition to image processing methods, approaches that generate the data necessary for radiologists to make a diagnosis are also implemented (the volumes of both lungs and pathological findings in them are calculated, percentages of parenchymal tissue involvement in the pathological process are determined, the severity of the disease is assessed). The algorithms for generating a processed series of images and a DICOM SR are described. The average time spent by the module on processing one CT study containing about 600 slices, with a video memory limit of 6 GB, is 68 s, and with a limit of 8 GB — 56 s. Considering that the approximate time spent by a radiologist to process a study is about 6 minutes, the developed module can be effectively used in medical practice to reduce the burden on medical personnel.
期刊介绍:
Journal “Radioelectronics. Nanosystems. Information Technologies” (abbr RENSIT) publishes original articles, reviews and brief reports, not previously published, on topical problems in radioelectronics (including biomedical) and fundamentals of information, nano- and biotechnologies and adjacent areas of physics and mathematics. The authors of the journal are academicians, corresponding members and foreign members of the Russian Academy of Natural Sciences (RANS) and their colleagues, as well as other russian and foreign authors on the proposal of the members of RANS, which can be obtained by the author before sending articles to the editor or after its arrival on the recommendation of a member of the editorial board or another member of the RANS, who gave the opinion on the article at the request of the editior. The editors will accept articles in both Russian and English languages. Articles are internally peer reviewed (double-blind peer review) by members of the Editorial Board. Some articles undergo external review, if necessary. Designed for researchers, graduate students, physics students of senior courses and teachers. It turns out 2 times a year (that includes 2 rooms)