黑洞x射线双星的准周期振荡:观测与理论

IF 11.7 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS New Astronomy Reviews Pub Date : 2019-09-01 DOI:10.1016/j.newar.2020.101524
Adam R. Ingram, Sara E. Motta
{"title":"黑洞x射线双星的准周期振荡:观测与理论","authors":"Adam R. Ingram,&nbsp;Sara E. Motta","doi":"10.1016/j.newar.2020.101524","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Black hole and neutron star X-ray binary systems routinely show quasi-periodic oscillations (QPOs) in their X-ray flux. Despite being strong, easily measurable signals, their physical origin has long remained elusive. However, recent observational and theoretical work has greatly improved our understanding. Here, we briefly review the basic phenomenology of the different varieties of QPO in both black hole and neutron star systems before focusing mainly on low frequency QPOs in black hole systems, for which much of the recent progress has been made. We describe the detailed statistical properties of these QPOs and review the physical models proposed in the literature, with particular attention to those based on Lense-Thirring precession. This is a </span>relativistic effect whereby a spinning massive object twists up the surrounding spacetime, inducing nodal precession in inclined orbits. We review the theory describing how an accretion flow reacts to the Lense-Thirring effect, including analytic theory and recent numerical simulations. We then describe recent observational tests that provide very strong evidence that at least a certain type of low frequency QPOs are a geometric effect, and good evidence that they are the result of precession. We discuss the possibility of the spin axis of the compact object being misaligned with the binary rotation axis for a large fraction of X-ray binaries, as is required for QPOs to be driven specifically by Lense-Thirring precession, as well as some outstanding gaps in our understanding and future opportunities provided by X-ray </span>polarimeters and/or high throughput X-ray detectors.</p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":"85 ","pages":"Article 101524"},"PeriodicalIF":11.7000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2020.101524","citationCount":"72","resultStr":"{\"title\":\"A review of quasi-periodic oscillations from black hole X-ray binaries: Observation and theory\",\"authors\":\"Adam R. Ingram,&nbsp;Sara E. Motta\",\"doi\":\"10.1016/j.newar.2020.101524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Black hole and neutron star X-ray binary systems routinely show quasi-periodic oscillations (QPOs) in their X-ray flux. Despite being strong, easily measurable signals, their physical origin has long remained elusive. However, recent observational and theoretical work has greatly improved our understanding. Here, we briefly review the basic phenomenology of the different varieties of QPO in both black hole and neutron star systems before focusing mainly on low frequency QPOs in black hole systems, for which much of the recent progress has been made. We describe the detailed statistical properties of these QPOs and review the physical models proposed in the literature, with particular attention to those based on Lense-Thirring precession. This is a </span>relativistic effect whereby a spinning massive object twists up the surrounding spacetime, inducing nodal precession in inclined orbits. We review the theory describing how an accretion flow reacts to the Lense-Thirring effect, including analytic theory and recent numerical simulations. We then describe recent observational tests that provide very strong evidence that at least a certain type of low frequency QPOs are a geometric effect, and good evidence that they are the result of precession. We discuss the possibility of the spin axis of the compact object being misaligned with the binary rotation axis for a large fraction of X-ray binaries, as is required for QPOs to be driven specifically by Lense-Thirring precession, as well as some outstanding gaps in our understanding and future opportunities provided by X-ray </span>polarimeters and/or high throughput X-ray detectors.</p></div>\",\"PeriodicalId\":19718,\"journal\":{\"name\":\"New Astronomy Reviews\",\"volume\":\"85 \",\"pages\":\"Article 101524\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.newar.2020.101524\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Astronomy Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387647320300014\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy Reviews","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387647320300014","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 72

摘要

黑洞和中子星x射线双星系统在其x射线通量中通常表现出准周期振荡(QPOs)。尽管它们是强烈的、容易测量的信号,但它们的物理来源长期以来一直难以捉摸。然而,最近的观测和理论工作大大提高了我们的认识。在此,我们简要回顾了黑洞和中子星系统中不同类型QPO的基本现象学,然后主要关注黑洞系统中的低频QPO,这是最近取得的许多进展。我们详细描述了这些QPOs的统计特性,并回顾了文献中提出的物理模型,特别关注了基于Lense-Thirring进动的物理模型。这是一种相对论效应,一个旋转的大质量物体扭曲了周围的时空,在倾斜的轨道上引起了节点进动。我们回顾了描述吸积流如何对透镜-蒂林效应作出反应的理论,包括解析理论和最近的数值模拟。然后,我们描述了最近的观测测试,这些测试提供了非常有力的证据,证明至少某种类型的低频qpo是一种几何效应,并且很好地证明它们是进动的结果。我们讨论了致密天体自转轴与双星自转轴在很大一部分x射线双星中错位的可能性,这是由透镜-蒂林进动驱动QPOs所必需的,以及我们在理解和x射线偏振仪和/或高通量x射线探测器提供的未来机会方面的一些突出差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of quasi-periodic oscillations from black hole X-ray binaries: Observation and theory

Black hole and neutron star X-ray binary systems routinely show quasi-periodic oscillations (QPOs) in their X-ray flux. Despite being strong, easily measurable signals, their physical origin has long remained elusive. However, recent observational and theoretical work has greatly improved our understanding. Here, we briefly review the basic phenomenology of the different varieties of QPO in both black hole and neutron star systems before focusing mainly on low frequency QPOs in black hole systems, for which much of the recent progress has been made. We describe the detailed statistical properties of these QPOs and review the physical models proposed in the literature, with particular attention to those based on Lense-Thirring precession. This is a relativistic effect whereby a spinning massive object twists up the surrounding spacetime, inducing nodal precession in inclined orbits. We review the theory describing how an accretion flow reacts to the Lense-Thirring effect, including analytic theory and recent numerical simulations. We then describe recent observational tests that provide very strong evidence that at least a certain type of low frequency QPOs are a geometric effect, and good evidence that they are the result of precession. We discuss the possibility of the spin axis of the compact object being misaligned with the binary rotation axis for a large fraction of X-ray binaries, as is required for QPOs to be driven specifically by Lense-Thirring precession, as well as some outstanding gaps in our understanding and future opportunities provided by X-ray polarimeters and/or high throughput X-ray detectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Astronomy Reviews
New Astronomy Reviews 地学天文-天文与天体物理
CiteScore
18.60
自引率
1.70%
发文量
7
审稿时长
11.3 weeks
期刊介绍: New Astronomy Reviews publishes review articles in all fields of astronomy and astrophysics: theoretical, observational and instrumental. This international review journal is written for a broad audience of professional astronomers and astrophysicists. The journal covers solar physics, planetary systems, stellar, galactic and extra-galactic astronomy and astrophysics, as well as cosmology. New Astronomy Reviews is also open for proposals covering interdisciplinary and emerging topics such as astrobiology, astroparticle physics, and astrochemistry.
期刊最新文献
Observations of pre- and proto-brown dwarfs in nearby clouds: Paving the way to further constraining theories of brown dwarf formation Exploring Titan’s subsurface: Insights from Cassini RADAR and prospects for future investigations Gamma-ray bursts at extremely small fluence The CR volume for black holes and the corresponding entropy variation: A review Blind source separation in 3rd generation gravitational-wave detectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1