{"title":"具有间歇观测的卡尔曼滤波与数据丢失重建","authors":"T. Rhouma, J. Keller, M. Abdelkrim","doi":"10.34768/amcs-2022-0018","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with the problem of joint state and unknown input estimation for stochastic discrete-time linear systems subject to intermittent unknown inputs on measurements. A Kalman filter approach is proposed for state prediction and intermittent unknown input reconstruction. The filter design is based on the minimization of the trace of the state estimation error covariance matrix under the constraint that the state prediction error is decoupled from active unknown inputs corrupting measurements at the current time. When the system is not strongly detectable, a sufficient stochastic stability condition on the mathematical expectation of the random state prediction errors covariance matrix is established in the case where the arrival binary sequences of unknown inputs follow independent random Bernoulli processes. When the intermittent unknown inputs on measurements represent intermittent observations, an illustrative example shows that the proposed filter corresponds to a Kalman filter with intermittent observations having the ability to generate a minimum variance unbiased prediction of measurement losses.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"36 1","pages":"241 - 253"},"PeriodicalIF":1.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Kalman Filter with Intermittent Observations and Reconstruction of Data Losses\",\"authors\":\"T. Rhouma, J. Keller, M. Abdelkrim\",\"doi\":\"10.34768/amcs-2022-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper deals with the problem of joint state and unknown input estimation for stochastic discrete-time linear systems subject to intermittent unknown inputs on measurements. A Kalman filter approach is proposed for state prediction and intermittent unknown input reconstruction. The filter design is based on the minimization of the trace of the state estimation error covariance matrix under the constraint that the state prediction error is decoupled from active unknown inputs corrupting measurements at the current time. When the system is not strongly detectable, a sufficient stochastic stability condition on the mathematical expectation of the random state prediction errors covariance matrix is established in the case where the arrival binary sequences of unknown inputs follow independent random Bernoulli processes. When the intermittent unknown inputs on measurements represent intermittent observations, an illustrative example shows that the proposed filter corresponds to a Kalman filter with intermittent observations having the ability to generate a minimum variance unbiased prediction of measurement losses.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"36 1\",\"pages\":\"241 - 253\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2022-0018\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2022-0018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A Kalman Filter with Intermittent Observations and Reconstruction of Data Losses
Abstract This paper deals with the problem of joint state and unknown input estimation for stochastic discrete-time linear systems subject to intermittent unknown inputs on measurements. A Kalman filter approach is proposed for state prediction and intermittent unknown input reconstruction. The filter design is based on the minimization of the trace of the state estimation error covariance matrix under the constraint that the state prediction error is decoupled from active unknown inputs corrupting measurements at the current time. When the system is not strongly detectable, a sufficient stochastic stability condition on the mathematical expectation of the random state prediction errors covariance matrix is established in the case where the arrival binary sequences of unknown inputs follow independent random Bernoulli processes. When the intermittent unknown inputs on measurements represent intermittent observations, an illustrative example shows that the proposed filter corresponds to a Kalman filter with intermittent observations having the ability to generate a minimum variance unbiased prediction of measurement losses.
期刊介绍:
The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences.
The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas:
-modern control theory and practice-
artificial intelligence methods and their applications-
applied mathematics and mathematical optimisation techniques-
mathematical methods in engineering, computer science, and biology.