卡塔尔致密气藏:预测碳酸盐岩油藏最终采收率(EUR)的分子模拟方法

E. Elbashier, I. Hussein
{"title":"卡塔尔致密气藏:预测碳酸盐岩油藏最终采收率(EUR)的分子模拟方法","authors":"E. Elbashier, I. Hussein","doi":"10.29117/quarfe.2021.0063","DOIUrl":null,"url":null,"abstract":"The geometrical properties of the reservoir rocks are usually affected by natural thermodynamics or environmental changes that may affect the amount of gas in place in the reservoir. To address these properties, we conduct density functional theory calculations to study the effect of gas composition on the adsorption (Eads), considering surface strain and curvature effects. Additional analyses, like geometrical analysis, and surface energy, were conducted to explain the results. The results of the strain effect showed that regardless of the strain values or curvature levels, all considered gases are physisorbed, with CO2 having the largest Eads. In addition to their weak interaction with the surface, CH4 shows no particular changing trend of the Eads with strain. The effect of strain becomes more pronounced in the case of CO2 and C2H6. A new model of the nanopore, which is the cylindrical-shaped nanopore, is introduced. Cylindrical nanopores have greater adsorption affinity compared to the flat surface, which demonstrates their higher gas capacity. Additionally, a mathematical model of the Eads vs. the diameter is developed. The capacity test of CH4 and CO2 showed adsorption of >24 molecules. These findings can be useful for determining the estimated ultimate recovery in carbonaceous tight gas reservoirs.","PeriodicalId":9295,"journal":{"name":"Building Resilience at Universities: Role of Innovation and Entrepreneurship","volume":"EM-34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qatari tight Gas Reservoirs: Molecular Simulation insights toward Estimation of Ultimate Recovery (EUR) from Carbonated Reservoirs\",\"authors\":\"E. Elbashier, I. Hussein\",\"doi\":\"10.29117/quarfe.2021.0063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The geometrical properties of the reservoir rocks are usually affected by natural thermodynamics or environmental changes that may affect the amount of gas in place in the reservoir. To address these properties, we conduct density functional theory calculations to study the effect of gas composition on the adsorption (Eads), considering surface strain and curvature effects. Additional analyses, like geometrical analysis, and surface energy, were conducted to explain the results. The results of the strain effect showed that regardless of the strain values or curvature levels, all considered gases are physisorbed, with CO2 having the largest Eads. In addition to their weak interaction with the surface, CH4 shows no particular changing trend of the Eads with strain. The effect of strain becomes more pronounced in the case of CO2 and C2H6. A new model of the nanopore, which is the cylindrical-shaped nanopore, is introduced. Cylindrical nanopores have greater adsorption affinity compared to the flat surface, which demonstrates their higher gas capacity. Additionally, a mathematical model of the Eads vs. the diameter is developed. The capacity test of CH4 and CO2 showed adsorption of >24 molecules. These findings can be useful for determining the estimated ultimate recovery in carbonaceous tight gas reservoirs.\",\"PeriodicalId\":9295,\"journal\":{\"name\":\"Building Resilience at Universities: Role of Innovation and Entrepreneurship\",\"volume\":\"EM-34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building Resilience at Universities: Role of Innovation and Entrepreneurship\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29117/quarfe.2021.0063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Resilience at Universities: Role of Innovation and Entrepreneurship","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29117/quarfe.2021.0063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

储层岩石的几何性质通常受到自然热力学或环境变化的影响,这些变化可能会影响储层中的天然气量。为了解决这些性质,我们进行密度泛函理论计算,研究气体成分对吸附(Eads)的影响,考虑表面应变和曲率效应。额外的分析,如几何分析和表面能,被用来解释结果。应变效应的结果表明,无论应变值或曲率水平如何,所有考虑的气体都被物理吸收,其中CO2具有最大的Eads。除了与表面的弱相互作用外,CH4的Eads随应变变化没有特别的变化趋势。在CO2和C2H6的情况下,应变的影响更为明显。介绍了一种新的纳米孔模型,即圆柱状纳米孔。圆柱形纳米孔比平面纳米孔具有更大的吸附亲和性,表明其具有更高的容气量。此外,还建立了Eads与直径的数学模型。对CH4和CO2的容量测试表明,bbb24分子对CH4和CO2有吸附作用。这些发现有助于确定碳质致密气藏的最终采收率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Qatari tight Gas Reservoirs: Molecular Simulation insights toward Estimation of Ultimate Recovery (EUR) from Carbonated Reservoirs
The geometrical properties of the reservoir rocks are usually affected by natural thermodynamics or environmental changes that may affect the amount of gas in place in the reservoir. To address these properties, we conduct density functional theory calculations to study the effect of gas composition on the adsorption (Eads), considering surface strain and curvature effects. Additional analyses, like geometrical analysis, and surface energy, were conducted to explain the results. The results of the strain effect showed that regardless of the strain values or curvature levels, all considered gases are physisorbed, with CO2 having the largest Eads. In addition to their weak interaction with the surface, CH4 shows no particular changing trend of the Eads with strain. The effect of strain becomes more pronounced in the case of CO2 and C2H6. A new model of the nanopore, which is the cylindrical-shaped nanopore, is introduced. Cylindrical nanopores have greater adsorption affinity compared to the flat surface, which demonstrates their higher gas capacity. Additionally, a mathematical model of the Eads vs. the diameter is developed. The capacity test of CH4 and CO2 showed adsorption of >24 molecules. These findings can be useful for determining the estimated ultimate recovery in carbonaceous tight gas reservoirs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating the Concomitant Removal of Hydrocarbons and Heavy Metals by highly adapted Bacillus and Pseudomonas strains Exploring QU Health Students' Experiences of Burnout, Anxiety, and Empathy during the COVID-19 Pandemic: A Mixed Method Study Dietary Patterns and Risk of Inflammatory Bowel Disease: Findings from a Case-Control Study Understanding COVID-19-related Burnout in Qatar’s Community Pharmacists using the Job Demands-Resources Theory Experimental Investigations of Gas Kick for Single and Two-Phase Gas-liquid Flow in near Horizontal Wells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1