Jaouad Ennissioui, El Mahjoub Benghoulam, T. El Rhafiki, S. Fertahi
{"title":"基于光滑板和波纹板的间接式太阳能干燥机的RANS方法的三维CFD建模","authors":"Jaouad Ennissioui, El Mahjoub Benghoulam, T. El Rhafiki, S. Fertahi","doi":"10.1115/1.4063295","DOIUrl":null,"url":null,"abstract":"\n Solar dryers are traditional devices used for drying various products. Different indirect solar dryer (ISD) geometries were theoretically examined using computational fluid dynamics (CFD). The paper presents a numerical investigation of two indirect solar dryers using CFD simulation, comparing the velocity and thermal performance of dryers with smooth and corrugated absorber plates. The temperature values obtained by numerical simulations were compared to the experimental measurements and it was found a maximum variation difference of 1.26%. The maximum velocity in the SAC and the value of average temperature at the SAC outlet were found to be 0.58 m/s and 336 K for the smooth absorber ISD, and 0.77 m/s and 350 K for the corrugated absorber ISD. It was observed that the corrugated absorber plate exhibited superior thermal performance and a higher maximum velocity compared to the smooth absorber plate. Within the cabinet, a uniform temperature profile was observed, particularly for the corrugated case. V-shaped absorber plate offer higher heat transfer rates, increased turbulence, and greater surface area for heat transfer, making them more efficient for drying processes compared to smooth absorber plate. Therefore, corrugated absorber plates in solar air collectors is a more efficient option than using smooth absorber plates.","PeriodicalId":17404,"journal":{"name":"Journal of Thermal Science and Engineering Applications","volume":"20 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D CFD modeling using the RANS approach of Indirect-Type Solar Dryers based on Smooth and Corrugated Absorber Plates\",\"authors\":\"Jaouad Ennissioui, El Mahjoub Benghoulam, T. El Rhafiki, S. Fertahi\",\"doi\":\"10.1115/1.4063295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Solar dryers are traditional devices used for drying various products. Different indirect solar dryer (ISD) geometries were theoretically examined using computational fluid dynamics (CFD). The paper presents a numerical investigation of two indirect solar dryers using CFD simulation, comparing the velocity and thermal performance of dryers with smooth and corrugated absorber plates. The temperature values obtained by numerical simulations were compared to the experimental measurements and it was found a maximum variation difference of 1.26%. The maximum velocity in the SAC and the value of average temperature at the SAC outlet were found to be 0.58 m/s and 336 K for the smooth absorber ISD, and 0.77 m/s and 350 K for the corrugated absorber ISD. It was observed that the corrugated absorber plate exhibited superior thermal performance and a higher maximum velocity compared to the smooth absorber plate. Within the cabinet, a uniform temperature profile was observed, particularly for the corrugated case. V-shaped absorber plate offer higher heat transfer rates, increased turbulence, and greater surface area for heat transfer, making them more efficient for drying processes compared to smooth absorber plate. Therefore, corrugated absorber plates in solar air collectors is a more efficient option than using smooth absorber plates.\",\"PeriodicalId\":17404,\"journal\":{\"name\":\"Journal of Thermal Science and Engineering Applications\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Science and Engineering Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063295\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Science and Engineering Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063295","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
3D CFD modeling using the RANS approach of Indirect-Type Solar Dryers based on Smooth and Corrugated Absorber Plates
Solar dryers are traditional devices used for drying various products. Different indirect solar dryer (ISD) geometries were theoretically examined using computational fluid dynamics (CFD). The paper presents a numerical investigation of two indirect solar dryers using CFD simulation, comparing the velocity and thermal performance of dryers with smooth and corrugated absorber plates. The temperature values obtained by numerical simulations were compared to the experimental measurements and it was found a maximum variation difference of 1.26%. The maximum velocity in the SAC and the value of average temperature at the SAC outlet were found to be 0.58 m/s and 336 K for the smooth absorber ISD, and 0.77 m/s and 350 K for the corrugated absorber ISD. It was observed that the corrugated absorber plate exhibited superior thermal performance and a higher maximum velocity compared to the smooth absorber plate. Within the cabinet, a uniform temperature profile was observed, particularly for the corrugated case. V-shaped absorber plate offer higher heat transfer rates, increased turbulence, and greater surface area for heat transfer, making them more efficient for drying processes compared to smooth absorber plate. Therefore, corrugated absorber plates in solar air collectors is a more efficient option than using smooth absorber plates.
期刊介绍:
Applications in: Aerospace systems; Gas turbines; Biotechnology; Defense systems; Electronic and photonic equipment; Energy systems; Manufacturing; Refrigeration and air conditioning; Homeland security systems; Micro- and nanoscale devices; Petrochemical processing; Medical systems; Energy efficiency; Sustainability; Solar systems; Combustion systems